Skip to main content
Log in

Investigation of the nano-hydroxyapatite with different surface modifications on the properties of poly(lactide-co-glycolide acid)/poly(trimethylene carbonate)/nano-hydroxyapatite composites

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Nano-hydroxyapatite (HA) was successfully treated by three different surface modification methods of oleic acid (OA), silane coupling agent γ-aminopropyl triethoxysilane (KH550), and ethenyltrimethoxysilane (YDH171), respectively. Then, the treated HA and unmodified HA with 8 wt% were introduced into PLGA/PTMC blends, respectively. And the fracture morphology, thermal property, crystallization behavior, mechanical properties, surface wettability, and in vitro bioactivity of PLGA/PTMC/HA ternary composites were investigated. The results showed that the PLGA/PTMC/HA composite with the HA surface modified by OA had the highest mechanical properties, while the PLGA/PTMC/HA composite with the HA treated by silane coupling agent YDH171 had the excellent toughness, compared to the other samples. Moreover, the cells’ proliferation results confirmed that the ternary composites exhibited better biocompatibility. All the results suggested that the surface modification of HA was an ideal method in this study, and they would be potential to be used in the field of bone repair in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Pappalardo D, Mathisen T, Finne-Wistrand A (2019) Biocompatibility of resorbable polymers: a historical perspective and framework for the future. Biomacromolecules 20:1465–1477

    CAS  PubMed  Google Scholar 

  2. Castillo-Dali G, Velazquez-Cayon R, Angeles Serrera-Figallo M, Rodriguez-Gonzalez-Elipe A, Gutierrez-Perez J-L, Torres-Lagares D (2015) Importance of poly(lactic-co-glycolic acid) in scaffolds for guided bone regeneration: a focused review. J Oral Implantol 41:E152–E157

    PubMed  Google Scholar 

  3. Inzana JA, Olvera D, Fuller SM, Kelly JP, Graeve OA (2014) 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials 35:4026–4034

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Dhand C, Ong ST, Dwivedi N, Diaz SM, Venugopal JR (2016) Bio-inspired in situ crosslinking and mineralization of electrospun collagen scaffolds for bone tissue engineering. Biomaterials 104:323–338

    CAS  PubMed  Google Scholar 

  5. Kim J-A, Lim J, Naren R, H-s Y, Park EK (2016) Effect of the biodegradation rate controlled by pore structures in magnesium phosphate ceramic scaffolds on bone tissue regeneration in vivo. Acta Biomater 44:155–167

    CAS  PubMed  Google Scholar 

  6. Park HJ, Lee OJ, Lee MC, Moon BM, Ju HW (2015) Fabrication of 3D porous silk scaffolds by particulate (salt/sucrose) leaching for bone tissue reconstruction. Int J Biol Macromol 78:215–223

    CAS  PubMed  Google Scholar 

  7. Deng Y, Zhang M, Chen X, Pu X, Liao X (2017) A novel akermanite/poly (lactic-co-glycolic acid) porous composite scaffold fabricated via a solvent casting-particulate leaching method improved by solvent self-proliferating process. Regen Biomater 4:233–242

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Martina M, Hutmacher DW (2007) Biodegradable polymers applied in tissue engineering research: a review. Polym Int 56:145–157

    CAS  Google Scholar 

  9. Vilay V, Mariatti M, Ahmad Z, Pasomsouk K, Todo M (2009) Characterization of the mechanical and thermal properties and morphological behavior of biodegradable poly(L-lactide)/poly(ε-caprolactone) and poly(L-lactide)/poly(butylene succinate-co-L-lactate) polymeric blends. J Appl Polym Sci 114:1784–1792

    CAS  Google Scholar 

  10. Zhu Y, Wang Z, Li L, Gao D, Xu Q (2017) In vitro degradation behavior of a hydroxyapatite/poly(lactide-co-glycolide) composite reinforced by micro/nano-hybrid poly(glycolide) fibers for bone repair. J Mater Chem B 5:8695–8706

    CAS  PubMed  Google Scholar 

  11. Qi J, Feng SM, Zhang Y, Chen H, Xiong CD (2020) Investigations on the compatibilization between poly(lactic-co-glycolic acid)/poly(trimethylene carbonate) blends and poly(lactide-co-trimethylene carbonate). Colloid Polym Sci 298:169–178

    CAS  Google Scholar 

  12. Qi F, Wu J, Li H, Ma G (2019) Recent research and development of PLGA/PLA microspheres/nanoparticles: a review in scientific and industrial aspects. Front Chem Sci Eng 13:14–27

    CAS  Google Scholar 

  13. Yao J, Radin S, Leboy PS, Ducheyne P (2005) The effect of bioactive glass content on synthesis and bioactivity of composite poly (lactic-co-glycolic acid)/bioactive glass substrate for tissue engineering. Biomaterials 26:1935–1943

    CAS  PubMed  Google Scholar 

  14. Li X, Zhang S, Zhang X, Xie S, Zhao G, Zhang L (2017) Biocompatibility and physicochemical characteristics of poly(epsilon-caprolactone)/poly( lactide-co-glycolide)/nano-hydroxyapatite composite scaffolds for bone tissue engineering. Mater Des 114:149–160

    CAS  Google Scholar 

  15. Guo J, Ning C, Liu X (2018) Bioactive calcium phosphate silicate ceramic surface-modified PLGA for tendon-to-bone healing. Colloids Surf B Biointerfaces 164:388–395

    CAS  PubMed  Google Scholar 

  16. Jiang L, Ma B, Li Y, Ding H, Su S, Xiong C (2019) Effect of bamboo fiber on the degradation behavior and in vitro cytocompatibility of the nano-hydroxyapatite/poly(lactide-co-glycolide) (n-HA/PLGA) composite. Cellulose 26:1099–1110

    CAS  Google Scholar 

  17. Zheng S, Guan Y, Yu H, Huang G, Zheng C (2019) Poly-L-lysine-coated PLGA/poly(amino acid)-modified hydroxyapatite porous scaffolds as efficient tissue engineering scaffolds for cell adhesion, proliferation, and differentiation. New J Chem 43:9989–10002

    CAS  Google Scholar 

  18. Jiang L, Xiong C, Chen D, Jiang L, Pang X (2012) Effect of n-HA with different surface-modified on the properties of n-HA/PLGA composite. Appl Surf Sci 259:72–78

    Google Scholar 

  19. Luo Y-R, Zhang L, Chen C, Sun D-Y, Wu P (2018) The delayed degradation mechanism and mechanical properties of beta-TCP filler in poly(lactide-co-glycolide)/beta-tricalcium phosphate composite suture anchors during short-time degradation in vivo. J Mater Res 33:4278–4286

    CAS  Google Scholar 

  20. Zhang F, Song Q, Huang X, Li F, Wang K (2016) A novel high mechanical property PLGA composite matrix loaded with nanodiamond-phospholipid compound for bone tissue engineering. ACS Appl Mater Interfaces 8:1087–1097

    CAS  PubMed  Google Scholar 

  21. Qin Y, Yang J, Xue J (2015) Characterization of antimicrobial poly(lactic acid)/poly(trimethylene carbonate) films with cinnamaldehyde. J Mater Sci 50:1150–1158

    CAS  Google Scholar 

  22. Xie X, Bai W, Wu A, Chen D, Xiong C (2015) Increasing the compatibility of poly(l-lactide)/poly(para-dioxanone) blends through the addition of poly(para-dioxanone-co-l-lactide). J Appl Polym Sci 132. https://doi.org/10.1002/app.41323

  23. Lin W, Qu J-P (2019) Enhancing impact toughness of renewable poly(lactic acid)/thermoplastic polyurethane blends via constructing cocontinuous-like phase morphology assisted by ethylene-methyl acrylate-glycidyl methacrylate copolymer. Ind Eng Chem Res 58:10894–10907

    CAS  Google Scholar 

  24. Bai H, Huang C, Xiu H, Gao Y, Zhang Q, Fu Q (2013) Toughening of poly(L-lactide) with poly(epsilon-caprolactone): combined effects of matrix crystallization and impact modifier particle size. Polymer 54:5257–5266

    CAS  Google Scholar 

  25. Rathi SR, Coughlin EB, Hsu SL, Golub CS, Ling GH, Tzivanis MJ (2012) Effect of midblock on the morphology and properties of blends of ABA triblock copolymers of PDLA-mid-block-PDLA with PLLA. Polymer 53:3008–3016

    CAS  Google Scholar 

  26. Xu S, Liu J, Zhang L, Yang F, Tang P, Wu D (2017) Effects of HAp and TCP in constructing tissue engineering scaffolds for bone repair. J Mater Chem B 5:6110–6118

    CAS  PubMed  Google Scholar 

  27. Padmanabhan VP, Narayanan STSN, Sagadevan S, Hoque ME, Kulandaivelu R (2019) Advanced lithium substituted hydroxyapatite nanoparticles for antimicrobial and hemolytic studies. New J Chem 43:18484–18494

    CAS  Google Scholar 

  28. Si J, Lin J, Su C, Yu S, Cui Z (2019) Ultrasonication-induced modification of hydroxyapatite nanoparticles onto a 3D porous poly(lactic acid) scaffold with improved mechanical properties and biocompatibility. Macromol Mater Eng 304. https://doi.org/10.1002/mame.201900081

  29. Chen M, Tan J, Lian Y, Liu D (2008) Preparation of gelatin coated hydroxyapatite nanorods and the stability of its aqueous colloidal. Appl Surf Sci 254:2730–2735

    CAS  Google Scholar 

  30. Orr TE, Villars PA, Mitchell SL, Hsu HP, Spector M (2001) Compressive properties of cancellous bone defects in a rabbit model treated with particles of natural bone mineral and synthetic hydroxyapatite. Biomaterials 22:1953–1959

    CAS  PubMed  Google Scholar 

  31. Jiang L, Xiong C, Jiang L, Xu L (2013) Degradation behavior of hydroxyapatite/poly(lactic-co-glycolic) acid nanocomposite in simulated body fluid. Mater Res Bull 48:4186–4190

    CAS  Google Scholar 

  32. Jiang L, Xiong C, Jiang L, Chen D, Li Q (2013) Effect of n-HA content on the isothermal crystallization, morphology and mechanical property of n-HA/PLGA composites. Mater Res Bull 48:1233–1238

    Google Scholar 

  33. Li CY, Yang XJ, Zhang LY, Chen MF, Cui ZD (2007) In vivo histological evaluation of bioactive NiTi alloy after two years implantation. Mater Sci Eng C Biomim Supramol Syst 27:122–126

    CAS  Google Scholar 

  34. Zhang P, Hong Z, Yu T, Chen X, Jing X (2009) In vivo mineralization and osteogenesis of nanocomposite scaffold of poly (lactide-co-glycolide) and hydroxyapatite surface-grafted with poly(L-lactide). Biomaterials 30:58–70

    PubMed  Google Scholar 

  35. Matsuda A, Furuzono T, Walsh D, Kishida A, Tanaka J (2003) Surface modification of a porous hydroxyapatite to promote bonded polymer coatings. J Mater Sci Mater Med 14:973–978

    CAS  PubMed  Google Scholar 

  36. Borum L, Wilson OC (2003) Surface modification of hydroxyapatite. Part II. Silica Biomater 24:3681–3688

    CAS  Google Scholar 

  37. Xu L, Jiang L, Xiong C, Jiang L, Li Y (2014) Study on a novel double-layered composite membrane of mg-substituted nano-hydroxyapatite/poly(L-lactide-co-epsilon-caprolactone): effect of different L-lactide/epsilon-caprolactone ratios. Mater Sci Eng A 615:361–366

    CAS  Google Scholar 

  38. Yang T, Cui X, Kao Y, Wang H, Wen J (2016) Elecrtospinning PTMC/Gt/OA-HA composite fiber scaffolds and the biocompatibility with mandibular condylar chondrocytes. Colloids Surf A Physicochem Eng Asp 499:123–130

    CAS  Google Scholar 

  39. Li YB, Degroot K, Dewijn J, Klein C, Meer SVD (1994) Morphology and composition of NANOGRADE calcium-phosphate needle-like crystals formed by simple hydrothermal treatment. J Mater Sci Mater Med 5:326–331

    Google Scholar 

  40. He B, Wan YQ, Bei JZ, Wang SG (2004) Synthesis and cell affinity of functionalized poly(L-lactide-co-beta-malic acid) with high molecular weight. Biomaterials 25:5239–5247

    CAS  PubMed  Google Scholar 

  41. Song Y, Kamphuis MMJ, Zhang Z, Sterk LMT, Vermes I, Poot AA, Feijen J, Grijpma DW (2010) Flexible and elastic porous poly(trimethylene carbonate) structures for use in vascular tissue engineering. Acta Biomater 6:1269–1277

    CAS  PubMed  Google Scholar 

  42. Chrusciel JJ, Lesniak E (2015) Modification of epoxy resins with functional silanes, polysiloxanes, silsesquioxanes, silica and silicates. Prog Polym Sci 41:67–121

    CAS  Google Scholar 

  43. Oza S, Ning H, Ferguson I, Lu N (2014) Effect of surface treatment on thermal stability of the hemp-PLA composites: correlation of activation energy with thermal degradation. Compos Part B Eng 67:227–232

    CAS  Google Scholar 

  44. Wang Y, Dai J, Zhang Q, Xiao Y, Lang M (2010) Improved mechanical properties of hydroxyapatite/poly(ɛ-caprolactone) scaffolds by surface modification of hydroxyapatite. Appl Surf Sci 256:6107–6112

    CAS  Google Scholar 

  45. Li Y, Jiang L, Xiong C, Peng W (2015) Effect of different surface treatment for bamboo Fiber on the crystallization behavior and mechanical property of bamboo fiber/nanohydroxyapatite/poly(lactic-co-glycolic) composite. Ind Eng Chem Res 54:12017–12024

    CAS  Google Scholar 

  46. Rajan R, Rainosalo E, Thomas SP, Ramamoorthy SK, Zavasnik (2018) Modification of epoxy resin by silane-coupling agent to improve tensile properties of viscose fabric composites. Polym Bull 75:167–195

    CAS  Google Scholar 

  47. Guo L, Chen F, Zhou Y, Liu X, Xu W (2015) The influence of interface and thermal conductivity of filler on the nonisothermal crystallization kinetics of polypropylene/natural protein fiber composites. Compos Part B Eng 68:300–309

    CAS  Google Scholar 

  48. Jiang L, Jiang L, Xiong C, Xu L, Li Y (2016) Effect of l-lysine-assisted surface grafting for nano-hydroxyapatite on mechanical properties and in vitro bioactivity of poly(lactic acid-co-glycolic acid). J Biomater Appl 30:750–758

    CAS  Google Scholar 

  49. Peter M, Binulal NS, Nair SV, Selvamurugan N, Tamura H, Jayakumar R (2010) Novel biodegradable chitosan-gelatin/nano-bioactive glass ceramic composite scaffolds for alveolar bone tissue engineering. Chem Eng J 158:353–361

    CAS  Google Scholar 

  50. Cao J, Lu Y, Chen H, Zhang L, Xiong C (2018) Bioactive poly(etheretherketone) composite containing calcium polyphosphate and multi-walled carbon nanotubes for bone repair: mechanical property and in vitro biocompatibility. J Bioact Compat Polym 33:543–557

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support of Science and Technology supporting program of Sichuan province, China (No. 2014SZ0128).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengdong Xiong.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, J., Xiao, J., Zhang, T. et al. Investigation of the nano-hydroxyapatite with different surface modifications on the properties of poly(lactide-co-glycolide acid)/poly(trimethylene carbonate)/nano-hydroxyapatite composites. Colloid Polym Sci 299, 623–635 (2021). https://doi.org/10.1007/s00396-020-04783-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04783-5

Keywords

Navigation