Skip to main content
Log in

Photoinitiated polymerization of beta-cyclodextrin-stabilized Pickering high internal phase emulsion for preparation of polymethacrylate microsphere and its adsorption towards dyes

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Microsphere polymer material finds a wide range of applications in fields such as adsorbent, drug carrier, catalyst and coating, and receives continuous attention. We here report a novel strategy of quick synthesis of polymethacrylate microsphere via photoinitiated polymerization of methacrylate monomer in a high internal phase emulsion (HIPE). A low cost and environmentally friendly natural product of β-cyclodextrin (β-CD) has been directly used as Pickering emulsifier to stabilize the methacrylate monomer in water to prepare the HIPE. The factors to control the particle size such as the dosage of β-CD, volume fraction of monomer internal phase and amount of inert diluting solvent, have been investigated in detail. Meanwhile, the approach has been validated by using various methacrylate monomers. Our results indicate that using a diluting solvent can not only change the surface morphology but also control the inner microstructure of the microsphere. By using a poor solvent of cyclohexane as diluting agent, porous microsphere other than solid microsphere has been prepared, and it could be directly applied as adsorbent to decolor oil. Moreover, the obtained poly(glycidyl methacrylate) microsphere was post-modified to exhibit satisfactory adsorption efficiencies towards organic dye contaminates in water. Those results indicate powerful platform of the obtained microsphere with reactive groups for further modification to prepare functional materials for desired purposes. Based on the fast synthesis, high yield, low energy cost as well as no harmful waste, the preparation strategy reported in this work could be scalable, and the obtained microsphere may find promising potential applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data and code availability

The data and code will be available upon request to the corresponding author.

References

  1. Alsbaiee A, Smith BJ, Xiao LL, Ling YH, Helbling DE, Dichtel WR (2016) Rapid removal of organic micropollutants from water by a porous beta-cyclodextrin polymer. Nature 529:190–194. https://doi.org/10.1038/nature16185

    Article  CAS  Google Scholar 

  2. Liao MJ, Su L, Deng YC, Xiong S, Tang RD, Wu ZB, Ding CX, Yang LH, Gong DX (2021) Strategies to improve WO3-based photocatalysts for wastewater treatment: a review. J Mater Sci 56:14416–14447. https://doi.org/10.1007/s10853-021-06202-8

    Article  CAS  Google Scholar 

  3. Liu QM, Zhou Y, Lu J, Zhou YB (2020) Novel cyclodextrin-based adsorbents for removing pollutants from wastewater: a critical review. Chemosphere 241:125043. https://doi.org/10.1016/j.chemosphere.2019.125043

    Article  CAS  Google Scholar 

  4. Wang T, Gang HY, Cao YY, Yan L, Wei D, Wang HY, Zhang J (2023) Hydrous CeO2 polypyrrole nanocomposite as a stable and efficient adsorbent for defluoridation of acidic wastewater. J Mater Sci 58:7895–7914. https://doi.org/10.1007/s10853-023-08501-8

    Article  CAS  Google Scholar 

  5. Feng X, Long R, Wang L, Liu C, Bai Z, Liu X (2022) A review on heavy metal ions adsorption from water by layered double hydroxide and its composites. Sep Purif Technol 284:120099. https://doi.org/10.1016/j.seppur.2021.120099

    Article  CAS  Google Scholar 

  6. Selvasembian R, Gwenzi W, Chaukura N, Mthembu S (2021) Recent advances in the polyurethane-based adsorbents for the decontamination of hazardous wastewater pollutants. J Hazard Mater 417:125960. https://doi.org/10.1016/j.jhazmat.2021.125960

    Article  CAS  Google Scholar 

  7. Liu BY, Liu MX, Xie ZY, Li YR, Zhang AB (2022) Performance of defective Zr-MOFs for the adsorption of anionic dyes. J Mater Sci 57:5438–5455. https://doi.org/10.1007/s10853-022-06874-w

    Article  CAS  Google Scholar 

  8. Ruan L, Su MR, Qin XY, Ruan QT, Lang W, Wu MH, Chen YJ, Lv QZ (2022) Progress in the application of sustained-release drug microspheres in tissue engineering. Mater Today Bio 16:100394. https://doi.org/10.1016/j.mtbio.2022.100394

    Article  CAS  Google Scholar 

  9. Li C, Du YW, Lv HZ, Zhang J, Zhuang PZ, Yang W, Zhang YZ, Wang J, Cui WG, Chen W (2022) Injectable amphipathic artesunate prodrug-hydrogel microsphere as gene/drug nano-microplex for rheumatoid arthritis therapy. Adv Funct Mater 32:2206261. https://doi.org/10.1002/adfm.202206261

    Article  CAS  Google Scholar 

  10. Zhao ZY, Li G, Ruan HT, Chen KY, Cai ZW, Lu GH, Li RM, Deng LF, Cai M, Cui WG (2021) Capturing magnesium ions via microfluidic hydrogel microspheres for promoting cancellous bone regeneration. ACS Nano 15:13041–13054. https://doi.org/10.1021/acsnano.1c02147

    Article  CAS  Google Scholar 

  11. Li ZH, Hou JH, Gu X, Gao L, Su G, Li F (2022) m-SiO2@Cu and m-SiO2@TiO2@Cu core-shell microspheres: synthesis, characterization and catalytic activities. J Mater Sci 57:4990–5005. https://doi.org/10.1007/s10853-022-06910-9

    Article  CAS  Google Scholar 

  12. Cai L, Ying D, Liang X, Zhu M, Lin X, Xu Q, Cai Z, Xu X, Zhang L (2021) A novel cationic polyelectrolyte microsphere for ultrafast and ultra-efficient removal of heavy metal ions and dyes. Chem Eng J 410:128404. https://doi.org/10.1016/j.cej.2021.128404

    Article  CAS  Google Scholar 

  13. Qi PF, Luo R, Pichler T, Zeng JQ, Wang Y, Fan YH, Sui KY (2019) Development of a magnetic core-shell Fe3O4@TA@UiO-66 microsphere for removal of arsenic(III) and antimony(III) from aqueous solution. J Hazard Mater 378:120721. https://doi.org/10.1016/j.jhazmat.2019.05.114

    Article  CAS  Google Scholar 

  14. Wei B, Wang SJ, Song HG, Liu HY, Li J, Liu N (2009) A review of recent progress in preparation of hollow polymer microspheres. Pet Sci 6:306–312. https://doi.org/10.1007/s12182-009-0049-1

    Article  CAS  Google Scholar 

  15. Zhang HF, Cooper AI (2005) Synthesis and applications of emulsion-templated porous materials. Soft Matter 1:107–113. https://doi.org/10.1039/b502551f

    Article  CAS  Google Scholar 

  16. Gao HX, Ma L, Cheng C, Liu JP, Liang RH, Zou LQ, Liu W, McClements DJ (2021) Review of recent advances in the preparation, properties, and applications of high internal phase emulsions. Trends Food Sci Technol 112:36–49. https://doi.org/10.1016/j.tifs.2021.03.041

    Article  CAS  Google Scholar 

  17. Taylor-Pashow KML, Pribyl JG (2019) PolyHIPEs for separations and chemical transformations: a review. Solvent Extr Ion Exch 37:1–26. https://doi.org/10.1080/07366299.2019.1592924

    Article  CAS  Google Scholar 

  18. Zhu YF, Wang WB, Yu H, Wang AQ (2020) Preparation of porous adsorbent via Pickering emulsion template for water treatment: a review. J Environ Sci 88:217–236. https://doi.org/10.1016/j.jes.2019.09.001

    Article  CAS  Google Scholar 

  19. Tripodo G, Marrubini G, Corti M, Brusotti G, Milanese C, Sorrenti M, Catenacci L, Massolini G, Calleri E (2018) Acrylate-based poly-high internal phase emulsions for effective enzyme immobilization and activity retention: from computationally-assisted synthesis to pharmaceutical applications. Polym Chem 9:87–97. https://doi.org/10.1039/c7py01626c

    Article  CAS  Google Scholar 

  20. Aithubeiti KM, Horozov TS (2019) Efficient preparation of macroporous poly(methyl methacrylate) materials from high internal phase emulsion templates. React Funct Polym 142:207–212. https://doi.org/10.1016/j.reactfunctpolym.2019.06.015

    Article  CAS  Google Scholar 

  21. Silverstein MS (2017) Emulsion-templated polymers: contemporary contemplations. Polymer 126:261–282. https://doi.org/10.1016/j.polymer.2017.07.046

    Article  CAS  Google Scholar 

  22. Chen CY, Eissa AM, Schiller TL, Cameron NR (2017) Emulsion-templated porous polymers prepared by thiol-ene and thiol-yne photopolymerisation using multifunctional acrylate and non-acrylate monomers. Polymer 126:395–401. https://doi.org/10.1016/j.polymer.2017.04.021

    Article  CAS  Google Scholar 

  23. Danninger D, Hartmann F, Paschinger W, Pruckner R, Schwodiauer R, Demchyshyn S, Bismarck A, Bauer S, Kaltenbrunner M (2020) Stretchable polymerized high internal phase emulsion separators for high performance soft batteries. Adv Energy Mater 10:2000467. https://doi.org/10.1002/aenm.202000467

    Article  CAS  Google Scholar 

  24. Cameron NR (2005) High internal phase emulsion templating as a route to well-defined porous polymers. Polymer 46:1439–1449. https://doi.org/10.1016/j.polymer.2004.11.097

    Article  CAS  Google Scholar 

  25. Zhang T, Xu G, Blum FD (2023) Eco-friendly room-temperature polymerization in emulsions and beyond. Polym Rev 63:852–865. https://doi.org/10.1080/15583724.2023.2176514

    Article  CAS  Google Scholar 

  26. Binks BP (2002) Particles as surfactants—similarities and differences. Curr Opin Colloid Interface Sci 7:21–41. https://doi.org/10.1016/s1359-0294(02)00008-0

    Article  CAS  Google Scholar 

  27. Rodriguez AMB, Binks BP (2022) High internal phase Pickering emulsions. Curr Opin Colloid Interface Sci 57:101556. https://doi.org/10.1016/j.cocis.2021.101556

    Article  CAS  Google Scholar 

  28. Hu Y, Huang J, Zhang Q, Yang Y, Ma S, Wang C (2015) Functional nanoparticle-decorated graphene oxide sheets as stabilizers for Pickering high internal phase emulsions and graphene oxide based foam monoliths. Rsc Adv 5:103394–103402. https://doi.org/10.1039/c5ra18397a

    Article  CAS  Google Scholar 

  29. Xu CB, Sun Y, Sun YY, Cai RY, Zhang SM (2023) High internal phase Pickering emulsion stabilized by lipase-coated ZIF-8 nanoparticles towards recyclable biphasic biocatalyst. Catalysts 13:383. https://doi.org/10.3390/catal13020383

    Article  CAS  Google Scholar 

  30. Kim D, Kim H, Chang JY (2020) Designing internal hierarchical porous networks in polymer monoliths that exhibit rapid removal and photocatalytic degradation of aromatic pollutants. Small 16:190755. https://doi.org/10.1002/smll.201907555

    Article  CAS  Google Scholar 

  31. Liu Z, Li Y, Geng S, Mo H, Liu B (2021) Fabrication of food-grade Pickering high internal phase emulsions stabilized by the mixture of beta-cyclodextrin and sugar beet pectin. Int J Biol Macromol 182:252–263. https://doi.org/10.1016/j.ijbiomac.2021.04.002

    Article  CAS  Google Scholar 

  32. Zhang SM, Chen JD (2009) PMMA based foams made via surfactant-free high internal phase emulsion templates. Chem Commun 16:2217–2219. https://doi.org/10.1039/b819101h

    Article  CAS  Google Scholar 

  33. Wu JH, Guan X, Wang CH, Ngai T, Lin W (2022) pH-Responsive Pickering high internal phase emulsions stabilized by Waterborne polyurethane. J Colloid Interface Sci 610:994–1004. https://doi.org/10.1016/j.jcis.2021.11.156

    Article  CAS  Google Scholar 

  34. Sarkar A, Dickinson E (2020) Sustainable food-grade Pickering emulsions stabilized by plant-based particles. Curr Opin Colloid Interface Sci 49:69–81. https://doi.org/10.1016/j.cocis.2020.04.004

    Article  CAS  Google Scholar 

  35. Sharkawy A, Barreiro MF, Rodrigues AE (2020) Chitosan-based Pickering emulsions and their applications: a review. Carbohydr Polym 250:116885. https://doi.org/10.1016/j.carbpol.2020.116885

    Article  CAS  Google Scholar 

  36. Wang C, Pei XP, Tan JL, Zhang TW, Zhai KK, Zhang F, Bai YG, Deng YK, Zhang BC, Wang YC, Tan Y, Xu K, Wang PX (2020) Thermoresponsive starch-based particle-stabilized Pickering high internal phase emulsions as nutraceutical containers for controlled release. Int J Biol Macromol 146:171–178. https://doi.org/10.1016/j.ijbiomac.2019.12.269

    Article  CAS  Google Scholar 

  37. Ribeiro EF, Morell P, Nicoletti VR, Quiles A, Hernando I (2021) Protein- and polysaccharide-based particles used for Pickering emulsion stabilisation. Food Hydrocoll 119:106839. https://doi.org/10.1016/j.foodhyd.2021.106839

    Article  CAS  Google Scholar 

  38. Tan C, McClements DJ (2021) Application of advanced emulsion technology in the food industry: a review and critical evaluation. Foods 10:812. https://doi.org/10.3390/foods10040812

    Article  CAS  Google Scholar 

  39. Shi AM, Feng XY, Wang Q, Adhikari B (2020) Pickering and high internal phase Pickering emulsions stabilized by protein-based particles: a review of synthesis, application and prospective. Food Hydrocoll 109:106117. https://doi.org/10.1016/j.foodhyd.2020.106117

    Article  CAS  Google Scholar 

  40. Abdullah WJ, Ahmad T, Zhang C, Zhang H (2020) A review of recent progress on high internal-phase Pickering emulsions in food science. Trends Food Sci Technol 106:91–103. https://doi.org/10.1016/j.tifs.2020.10.016

    Article  CAS  Google Scholar 

  41. Li Q, Wu YA, Shabbir M, Pei Y, Liang HS, Li J, Chen YJ, Li Y, Li B, Luo XG, Liu SL (2021) Coalescence behavior of eco-friendly Pickering-MIPES and HIPEs stabilized by using bacterial cellulose nanofibrils. Food Chem 349:129163. https://doi.org/10.1016/j.foodchem.2021.129163

    Article  CAS  Google Scholar 

  42. Wang ZJ, Huang ST, Zhao XY, Yang SJ, Mai KY, Qin WQ, Liu KY, Huang JH, Feng YH, Li JC, Yu GB (2023) Covalent bond interfacial recognition of polysaccharides/silica reinforced high internal phase Pickering emulsions for 3D printing. Acs Appl Mater Interfaces 15:23989–24002. https://doi.org/10.1021/acsami.3c03642

    Article  CAS  Google Scholar 

  43. Bai YF, Qiu TT, Chen B, Shen C, Yu CB, Luo Z, Zhang J, Xu WA, Deng ZL, Xu JX, Zhang HC (2023) Formulation and stabilization of high internal phase emulsions: stabilization by cellulose nanocrystals and gelatinized soluble starch. Carbohydr Polym 312:120693. https://doi.org/10.1016/j.carbpol.2023.120693

    Article  CAS  Google Scholar 

  44. Pang B, Liu H, Liu PW, Peng XW, Zhang K (2018) Water-in-oil Pickering emulsions stabilized by stearoylated microcrystalline cellulose. J Colloid Interface Sci 513:629–637. https://doi.org/10.1016/j.jcis.2017.11.079

    Article  CAS  Google Scholar 

  45. Eastburn SD, Tao BY (1994) Applications of modified cyclodextrins. Biotechnol Adv 12:325–339. https://doi.org/10.1016/0734-9750(94)90015-9

    Article  CAS  Google Scholar 

  46. Xiao ZB, Zhang YQ, Niu YW, Ke QF, Kou XR (2021) Cyclodextrins as carriers for volatile aroma compounds: a review. Carbohydr Polym 269:118292. https://doi.org/10.1016/j.carbpol.2021.118292

    Article  CAS  Google Scholar 

  47. Liu ZB, Geng S, Jiang ZJ, Liu BG (2020) Fabrication and characterization of food-grade Pickering high internal emulsions stabilized with beta-cyclodextrin. Lwt Food Sci Technol 134:110134. https://doi.org/10.1016/j.lwt.2020.110134

    Article  CAS  Google Scholar 

  48. Yuan C, Cheng CY, Cui B (2021) Pickering emulsions stabilized by cyclodextrin nanoparticles: a review. Starch-Starke 73:2100077. https://doi.org/10.1002/star.202100077

    Article  CAS  Google Scholar 

  49. Tian YC, Yuan C, Cui B, Lu L, Zhao M, Liu PF, Wu ZZ, Li JP (2022) Pickering emulsions stabilized by beta-cyclodextrin and cinnamaldehyde essential oil/beta-cyclodextrin composite: a comparison study. Food Chem 377:131995. https://doi.org/10.1016/j.foodchem.2021.131995

    Article  CAS  Google Scholar 

  50. Wei ZQ, Wang Z, Hong RY, Wang YF (2017) Monodisperse plum-like sulfonated PGMA-DVB microspheres as a new ion exchange resin. J Appl Polym Sci 134:44994. https://doi.org/10.1002/app.44994

    Article  CAS  Google Scholar 

  51. Long J, Etxabide Etxeberria A, Kornelsen C, Nand AV, Ray S, Bunt CR, Seyfoddin A (2019) Development of a long-term drug delivery system with levonorgestrel-loaded chitosan microspheres embedded in poly(vinyl alcohol) hydrogel. ACS Appl Bio Mater 2:2766–2779. https://doi.org/10.1021/acsabm.9b00190

    Article  CAS  Google Scholar 

  52. Tang X, Kang W, Zhou B, Gao Y, Cao C, Guo S, Iqbal MW, Yang H (2020) Characteristics of composite microspheres for in-depth profile control in oilfields and the effects of polymerizable silica nanoparticles. Powder Technol 359:205–215. https://doi.org/10.1016/j.powtec.2019.09.070

    Article  CAS  Google Scholar 

  53. Xu Y, Rashwan AK, Osman AI, Abd El-Monaem EM, Elgarahy AM, Eltaweil AS, Omar M, Li YT, Mehanni AHE, Chen W, Rooney DW (2023) Synthesis and potential applications of cyclodextrin-based metal-organic frameworks: a review. Environ Chem Lett 21:447–477. https://doi.org/10.1007/s10311-022-01509-7

    Article  CAS  Google Scholar 

  54. Cheng CY, Yuan C, Cui B, Lu L, Li JP, Sha HJ (2023) Interfacial behavior of cyclodextrins at the oil-water interface of Pickering emulsion. Food Hydrocoll 134:108104. https://doi.org/10.1016/j.foodhyd.2022.108104

    Article  CAS  Google Scholar 

  55. Mathapa BG, Paunov VN (2013) Cyclodextrin stabilised emulsions and cyclodextrinosomes. Phys Chem Chem Phys 15:17903–17914. https://doi.org/10.1039/c3cp52116h

    Article  CAS  Google Scholar 

  56. Pierre SJ, Thies JC, Dureault A, Cameron NR, van Hest JCM, Carette N, Michon T, Weberskirch R (2006) Covalent enzyme immobilization onto photopolymerized highly porous monoliths. Adv Mater 18:1822–1826. https://doi.org/10.1002/adma.200600293

    Article  CAS  Google Scholar 

  57. Parin FN, Mert EH (2020) Hydrophilic closed-cell macroporous foam preparation by emulsion templating. Mater Lett 277:128287. https://doi.org/10.1016/j.matlet.2020.128287

    Article  CAS  Google Scholar 

  58. Cameron NR, Sherrington DC (1996) High internal phase emulsions (HIPEs)—Structure, properties and use in polymer preparation. Adv Polym Sci 126:163–214

    Article  CAS  Google Scholar 

  59. Frelichowska J, Bolzinger MA, Chevalier Y (2010) Effects of solid particle content on properties of o/w Pickering emulsions. J Colloid Interface Sci 351:348–356. https://doi.org/10.1016/j.jcis.2010.08.019

    Article  CAS  Google Scholar 

  60. Cheng J-h, Hu Y-n, Luo Z-g, Chen W, Chen H-m, Peng X-c (2017) Preparation and properties of octenyl succinate beta-cyclodextrin and its application as an emulsion stabilizer. Food Chem 218:116–121. https://doi.org/10.1016/j.foodchem.2016.09.019

    Article  CAS  Google Scholar 

  61. Zhao T, Qiu D (2011) One-pot synthesis of highly folded microparticles by suspension polymerization. Langmuir 27:12771–12774. https://doi.org/10.1021/la2028912

    Article  CAS  Google Scholar 

  62. Zhang Y, Zhang J, Liu Z, Huang Y, Xiong X (2022) Solid particles surface-modified with beta-cyclodextrin for sustained release of flavor. Mater Today Commun 33:104905. https://doi.org/10.1016/j.mtcomm.2022.104905

    Article  CAS  Google Scholar 

  63. Li S, Wu F, Wang E (2009) A water-soluble supramolecular structured photosensitive initiation system: Me-beta-CD complex of xanthene dye/aryliodonium salt. Polymer 50:3932–3937. https://doi.org/10.1016/j.polymer.2009.06.056

    Article  CAS  Google Scholar 

  64. Dong Z, Cui H, Zhang H, Wang F, Zhan X, Mayer F, Nestler B, Wegener M, Levkin PA (2021) 3D printing of inherently nanoporous polymers via polymerization-induced phase separation. Nat Commun 12:247. https://doi.org/10.1038/s41467-020-20498-1

    Article  CAS  Google Scholar 

  65. Gebru KA, Das C (2018) Removal of chromium (VI) ions from aqueous solutions using amine-impregnated TiO2 nanoparticles modified cellulose acetate membranes. Chemosphere 191:673–684. https://doi.org/10.1016/j.chemosphere.2017.10.107

    Article  CAS  Google Scholar 

  66. Lei Z, Ji J, Wu Q, Zhang J, Wang Y, Jing X, Liu Y (2019) Curing behavior and microstructure of epoxy-POSS modified novolac phenolic resin with different substitution degree. Polymer 178:121587. https://doi.org/10.1016/j.polymer.2019.121587

    Article  CAS  Google Scholar 

  67. Abu-Saied MA, Fontananova E, Drioli E, Eldin MSM (2013) Sulphonated poly (glycidyl methacrylate) grafted cellophane membranes: novel application in polyelectrolyte membrane fuel cell (PEMFC). J Polym Res 20:187. https://doi.org/10.1007/s10965-013-0187-4

    Article  CAS  Google Scholar 

  68. Tian XX, Zhu HS, Meng X, Wang J, Zheng CL, Xia YZ, Xiong Z (2020) Amphiphilic calcium alginate carbon aerogels: broad-spectrum adsorbents for ionic and solvent dyes with multiple functions for decolorized oil-water separation. Acs Sustain Chem Eng 8:12755–12767. https://doi.org/10.1021/acssuschemeng.0c00129

    Article  CAS  Google Scholar 

  69. Zhang Y, Wang D, Bai X, Xu J, Zhang J, Zhang G, Huang C, Liu W, Huang C, Xiong X (2023) Microfluidic preparation of magnetic chitosan microsphere and its adsorption towards Congo red. J Polym Res 30:77. https://doi.org/10.1007/s10965-022-03387-7

    Article  CAS  Google Scholar 

  70. Gad YH, Elbarbary AM (2021) Radiation synthesis of Fe3O4/SiO2/glycidyl methacrylate/acrylonitrile nanocomposite for adsorption of basic violet 7 dye: kinetic, isotherm, and thermodynamic study. Appl Organomet Chem 35:e6258. https://doi.org/10.1002/aoc.6258

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support from the Science and Technology Major Program of Fujian Province of China (No. 2022H6001) is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

ZYP was involved in preliminary investigation, data analysis, visualization and writing-original draft. JRH and ZYJ was involved in data curation, formal analysis and writing-original draft. HCZ was involved in methodology, funding acquisition and review. XXP was involved in conceptualization, methodology, funding acquisition and writing-review and editing. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Xiaopeng Xiong.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

The authors confirm that the work reported in this article does not involve any human tissue or organ and follows the Ethical rules issued by the publisher.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 758 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Jiang, R., Zhang, Y. et al. Photoinitiated polymerization of beta-cyclodextrin-stabilized Pickering high internal phase emulsion for preparation of polymethacrylate microsphere and its adsorption towards dyes. J Mater Sci 58, 16002–16018 (2023). https://doi.org/10.1007/s10853-023-09041-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09041-x

Navigation