Skip to main content
Log in

m-SiO2@Cu and m-SiO2@TiO2@Cu core–shell microspheres: synthesis, characterization and catalytic activities

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Two kinds of core–shell composite particles, i.e., mesoporous-SiO2@Cu (m-SiO2@Cu) and mesoporous-SiO2@TiO2@Cu (m-SiO2@TiO2@Cu) microspheres, were synthesized by coating Cu nanoparticles on the surfaces of m-SiO2 and m-SiO2@TiO2 microspheres. Results show that the m-SiO2 spheres have rougher surfaces and larger specific surface areas than the SiO2 microspheres. Compared with the m-SiO2@Cu microsphere, the m-SiO2@TiO2@Cu microsphere has a hollow structure. Both catalysts showed high catalytic activity to degrade methyl violet and methylene blue dyes. The degradations of two dyes using the m-SiO2@Cu approached 100% after 30 min, while it is slightly less, around 90% for the m-SiO2@TiO2@Cu. The catalytic activity of m-SiO2@Cu lies in Cu nanoparticles, which have large specific surface areas and are insensitive to light. The catalytic activity of m-SiO2@TiO2@Cu not only lies in Cu nanoparticles, but also in TiO2, which is sensitive to light. What’s more, Cu and TiO2 work as metal/semiconductor heterojunction, which enhances the electron–hole separation in m-SiO2@TiO2@Cu.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Das DP, Parida KM, Mishra BK (2007) A study on the structural properties of mesoporous silica spheres. Mater Lett 61:3942–3945. https://doi.org/10.1016/j.matlet.2006.12.084

    Article  CAS  Google Scholar 

  2. Le Y, Pu M, Chen JF (2007) Theoretical and experimental studies on the silica hollow spheres. J Non-Cryst Solids 353:164–169. https://doi.org/10.1016/j.jnoncrysol.2006.09.036

    Article  CAS  Google Scholar 

  3. Nalwa HS (2001) Handbook of surfaces and interfaces of materials. Academic Press, California

    Book  Google Scholar 

  4. Kalele S, Dey R, Hebalkar N, Urban J, Gosavi SW, Kulkarni SK (2005) Synthesis and characterization of silica-titania core-shell particles. Pramana-J Phys 65:787–791. https://doi.org/10.1007/BF02704076

    Article  CAS  Google Scholar 

  5. Guerrero-Martínez A, Pérez-Juste J, Liz-Marzán L (2010) Recent progress on silica coating of nanoparticles and related nanomaterials. Adv Mater Processes. https://doi.org/10.1002/adma.200901263

    Article  Google Scholar 

  6. Liz-Marzán L, Mulvaney P (2003) The assembly of coated nanocrystals. J Phys Chem B 107:7312–7326. https://doi.org/10.1021/jp027835b

    Article  CAS  Google Scholar 

  7. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse slica spheres in the micron size range. J Colloid Interface Sci 26:62–69. https://doi.org/10.1016/0021-9797(68)90272-5

    Article  Google Scholar 

  8. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38. https://doi.org/10.1038/238037a0

    Article  CAS  Google Scholar 

  9. Fei H, Liu Y, Li Y et al (2007) Selective synthesis of borated meso-macroporous and mesoporous spherical TiO2 with high photocatalytic activity. Microporous Mesoporous Mater 102:318–324. https://doi.org/10.1016/j.micromeso.2007.01.021

    Article  CAS  Google Scholar 

  10. Muruganandham M, Swaminathan M (2006) Photocatalytic decolourisation and degradation of reactive orange 4 by TiO2-UV process. Dyes Pigments 68:133–142. https://doi.org/10.1016/j.dyepig.2005.01.004

    Article  CAS  Google Scholar 

  11. Park JH, Kim S, Bard AJ (2006) Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett 6:24–28. https://doi.org/10.1021/nl051807y

    Article  CAS  Google Scholar 

  12. Tan LK, Kumar MK, An WW, Gao H (2010) Transparent, well-aligned TiO2 nanotube arrays with controllable dimensions on glass substrates for photocatalytic applications. Acs Appl Mater Interfaces 2:498–503. https://doi.org/10.1021/am900726k

    Article  CAS  Google Scholar 

  13. Creighton JA, Eadon DG (1991) Ultraviolet-visible absorption spectra of the colloidal metallic elements. J. Chem. Soc Faraday Trans 87:3881–3891. https://doi.org/10.1039/FT9918703881

    Article  CAS  Google Scholar 

  14. Kelly KL, Oronado EC, Lin LZ, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size shape and dielectric environment. Cheminform 34:668–677. https://doi.org/10.1002/chin.200316243

    Article  Google Scholar 

  15. Chen D, Shi J, Shen H (2020) High-dispersed catalysts of core-shell structured Au@SiO2 for formaldehyde catalytic oxidation. Chem Eng J 385:123887. https://doi.org/10.1016/j.cej.2019.123887

    Article  CAS  Google Scholar 

  16. Kaliyappan P, Paulus A, Haen JD et al (2021) Probing the impact of material properties of core-shell SiO2@TiO2 spheres on the plasma-catalytic CO2 dissociation using a packed bed DBD plasma reactor. J CO2 Util 46:101468. https://doi.org/10.1016/j.jcou.2021.101468

    Article  CAS  Google Scholar 

  17. Kitsou I, Panagopoulos P, Maggos T, Arkas M, Tsetsekou A (2018) Development of SiO2@TiO2 core-shell nanospheres for catalytic applications. Appl Surf Sci 441:223–231. https://doi.org/10.1016/j.apsusc.2018.02.008

    Article  CAS  Google Scholar 

  18. Lismont M, Páez C, Dreesen L (2015) A one-step short-time synthesis of Ag@SiO2 core-shell nanoparticles. J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2015.01.065

    Article  Google Scholar 

  19. Zhang N, Gao Y, Zhang H, Feng X, Huaihong Cai Y, Liu, (2010) Preparation and characterization of core-shell structure of SiO2@Cu antibacterial agent. Colloids Surf, B 81:537–543. https://doi.org/10.1016/j.colsurfb.2010.07.054

    Article  CAS  Google Scholar 

  20. Wang L, Zuo N, Liu Q et al (2021) Study on the removal of thiophene sulfides by porous core-shell SiO2@Cu/Ni. J Alloys Compd 855:157516. https://doi.org/10.1016/j.jallcom.2020.157516

    Article  CAS  Google Scholar 

  21. Wang X, Chen H (2015) A new approach to preparation of TiO2@void@SiO2 rattle type core shell structure nanoparticles via titanyl oxalate complex. Colloid Surface A 485:25–33. https://doi.org/10.1016/j.colsurfa.2015.08.036

    Article  CAS  Google Scholar 

  22. Wu L, Zhou Y, Nie W, Song L, Chen P (2015) Synthesis of highly monodispersed teardrop-shaped core-shell SiO2/TiO2 nanoparticles and their photocatalytic activities. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2015.05.152

    Article  Google Scholar 

  23. Cendrowski K, Chen X, Zielinska B, Kalenczuk RJ, Borowiak-Palen E (2011) Synthesis, characterization, and photocatalytic properties of core/shell mesoporous silica nanospheres supporting nanocrystalline titania. J Nanopart Res 13:5899–5908. https://doi.org/10.1007/s11051-011-0307-1

    Article  CAS  Google Scholar 

  24. Strauss M, Pastorello M, Sigoli FA, Silva J, Mazali IO (2014) Singular effect of crystallite size on the charge carrier generation and photocatalytic activity of nano-TiO2. Appl Surf Sci 319:151–157. https://doi.org/10.1016/j.apsusc.2014.06.071

    Article  CAS  Google Scholar 

  25. Sun Z, Bai C, Zheng S, Yang X, Frost RL (2013) A comparative study of different porous amorphous silica minerals supported TiO2 catalysts. Appl Catal A-Gen 458:103–110. https://doi.org/10.1016/j.apcata.2013.03.035

    Article  CAS  Google Scholar 

  26. Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758. https://doi.org/10.1021/cr00035a013

    Article  CAS  Google Scholar 

  27. Liang R, Xia Z (2012) Application of nano-copper catalysts in organic reactions. Chem Bullet / Huaxue Tongbao 75:786–795

    Google Scholar 

  28. Dan L, Jing G, Wang J, Ping C, Wei Y, Hou Z (2011) Bimetallic Pt-Cu catalysts for glycerol oxidation with oxygen in a base-free aqueous solution. Catal Commun 12:1059–1062. https://doi.org/10.1016/j.catcom.2011.03.019

    Article  CAS  Google Scholar 

  29. Xia S, Nie R, Lu X, Wang L, Ping C, Hou Z (2012) Hydrogenolysis of glycerol over Cu0.4/Zn5.6-xMgxAl2O8.6 catalysts: the role of basicity and hydrogen spillover. J Catal. https://doi.org/10.1016/j.jcat.2012.08.007

    Article  Google Scholar 

  30. Yuan Z, Wang J, Wang L et al (2010) Biodiesel derived glycerol hydrogenolysis to 1,2-propanediol on Cu/MgO catalysts. Bioresour Technol 101:7088–7092. https://doi.org/10.1016/j.biortech.2010.04.016

    Article  CAS  Google Scholar 

  31. Yuan Z, Wang L, Wang J et al (2011) Hydrogenolysis of glycerol over homogenously dispersed copper on solid base catalysts. Appl Catal B-Environ. https://doi.org/10.1016/j.apcatb.2010.10.013

    Article  Google Scholar 

  32. Glaze WH, Kang JW, Chapin DH (1987) The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone-Sci Eng 9:335–352. https://doi.org/10.1080/01919518708552148

    Article  CAS  Google Scholar 

  33. Matthews RW (1986) Photo-oxidation of organic material in aqueous suspensions of titanium dioxide. Water Res 20:569–578. https://doi.org/10.1016/0043-1354(86)90020-5

    Article  CAS  Google Scholar 

  34. Prengle HW (1983) Experimental rate constants and reactor considerations for the destruction of micropollutants and trihalomethane precursors by ozone with ultraviolet radiation. EnST 17:743. https://doi.org/10.1021/es00118a010

    Article  CAS  Google Scholar 

  35. Ku HK, Oh HJ, Noh KJ et al (2011) Crystalline characterization and photodecomposition properties of rod-shaped Na2Ti6O13 powder prepared by molten salt process. J Nanosci Nanotechnol 11:7269. https://doi.org/10.1166/jnn.2011.4820

    Article  CAS  Google Scholar 

  36. Chen H, He J, Tang H, Yan C (2008) Porous silica nanocapsules and nanospheres: dynamic self-assembly synthesis and application in controlled release. Chem Mater 20:5894–5900. https://doi.org/10.1021/cm801411y

    Article  CAS  Google Scholar 

  37. Bibby DM, Dale MP (1985) Synthesis of silica-sodalite from non-aqueous systems. Nature 317:157–158. https://doi.org/10.1038/317157a0

    Article  CAS  Google Scholar 

  38. Ingo GM, Dirè S, Babonneau F (1993) XPS studies of SiO2-TiO2 powders prepared by sol-gel process. Appl Surf Sci 70–71:230–234. https://doi.org/10.1016/0169-4332(93)90433-C

    Article  Google Scholar 

  39. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation, Minnesota

    Google Scholar 

  40. Yu JC, Zhang L, Yu J (2002) Direct sonochemical preparation and characterization of highly active mesoporous TiO2 with a Bicrystalline Framework. Chem Mater 14:4647–4653. https://doi.org/10.1021/cm0203924

    Article  CAS  Google Scholar 

  41. Zhang Y, Chen H, Wen Y, Yuan Y, Wu W, Liu C (2014) Tunable wettability of monodisperse core-shell nano-SiO2 modified with poly(methylhydrosiloxane) and allyl-poly(ethylene glycol). Colloid Surface A 441:16–24. https://doi.org/10.1016/j.colsurfa.2013.08.079

    Article  CAS  Google Scholar 

  42. Zhang Y, Zhang G, Liu S, Chao Z, Xu X (2012) “Naked” TiO2 capsulated in nanovoid microcapsule of poly(vinylidene fluoride) supporter with enhanced photocatalytic activity. Chem Eng J 204–206:217–224. https://doi.org/10.1016/j.cej.2012.07.124

    Article  CAS  Google Scholar 

  43. Luo SX, Wang FM, Shi ZS, Xin F (2009) Preparation of highly active photocatalyst anatase TiO2 by mixed template method. J Sol-Gel Sci Technol 52:1–7

    Article  CAS  Google Scholar 

  44. Li M, Hong Z, Fang Y, Huang F (2008) Synergistic effect of two surface complexes in enhancing visible-light photocatalytic activity of titanium dioxide. Mater Res Bull 43:2179–2186. https://doi.org/10.1016/j.materresbull.2007.08.030

    Article  CAS  Google Scholar 

  45. Kk J, Hr J (1994) Raman spectroscopic study of microcrystalline silica. Am Mineral 79:269–273. https://doi.org/10.1029/93JB02952

    Article  Google Scholar 

  46. Low J, Yu J, Jaroniec M, Wageh S, Al-Ghamdi AA (2017) Heterojunction photocatalysts. Adv Mater 29:1601694. https://doi.org/10.1002/adma.201601694

    Article  CAS  Google Scholar 

  47. Zhang Z, Wang Z, Cao SW, Xue C (2013) Au/Pt Nanoparticle-decorated TiO2 nanofibers with plasmon-enhanced photocatalytic activities for solar-to-fuel conversion. J Phys Chem C. https://doi.org/10.1021/jp409311x

    Article  Google Scholar 

  48. Zhang Z, Yates JT (2012) ChemInform abstract: band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. Chem Rev 112:5520–5551. https://doi.org/10.1021/cr3000626

    Article  CAS  Google Scholar 

  49. Tsutomu U, Tetsuya Y, Sigeru T, Keisuke A (2003) Visible light-induced degradation of methylene blue on S-doped TiO2. Chem Lett 32:330–331. https://doi.org/10.1246/cl.2003.330

    Article  Google Scholar 

  50. Tauber MM, Gübitz G, Rehorek A (2008) Degradation of azo dyes by oxidative processes - Laccase and ultrasound treatment. Bioresour Technol 99:4213–4220. https://doi.org/10.1128/AEM.71.5.2600-2607.2005

    Article  CAS  Google Scholar 

  51. Zheng Z, Huang B, Wang Z et al (2009) Crystal faces of Cu2O and their stabilities in photocatalytic reactions. J Phys Chem C 113:14448–14453. https://doi.org/10.1021/jp904198d

    Article  CAS  Google Scholar 

  52. Batista A, Carvalho H, Luz G, Martins P, GoncAlves M, Oliveira L (2010) Preparation of CuO/SiO2 and photocatalytic activity by degradation of methylene blue. Environ Chem Lett 8:63–67. https://doi.org/10.1007/s10311-008-0192-8

    Article  CAS  Google Scholar 

  53. Lei H, Feng P, Hao Y, Wang H (2009) Preparation of cuprous oxides with different sizes and their behaviors of adsorption, visible-light driven photocatalysis and photocorrosion. Solid State Sci 11:129–138. https://doi.org/10.1016/j.solidstatesciences.2008.04.013

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of the Natural Science Foundation of China (No.21776293 and No.52074183) and National Key Research and Development Program of China (No.2016YFB0601002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ge Su or Fei Li.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Handling Editor: Chris Cornelius.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Zhihui Li, Junhe Hou have contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Hou, J., Gu, X. et al. m-SiO2@Cu and m-SiO2@TiO2@Cu core–shell microspheres: synthesis, characterization and catalytic activities. J Mater Sci 57, 4990–5005 (2022). https://doi.org/10.1007/s10853-022-06910-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-06910-9

Navigation