Skip to main content

Advertisement

Log in

Bio-inspired MXene coated wood-like ordered chitosan aerogels for efficient solar steam generating devices

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Solar energy, as an endless clean energy, has great prospects for the use of water vapor from sewage purification and seawater desalination. Local heating of surface water has shown to maximize the energy efficiency of steam generation. Therefore, at first, the material is required to have a good ability of photo-thermal conversion. Among the photo-thermal converting materials, MXenes are arising candidates for effective photo-thermal conversion, which have shown excellent photo-thermal conversion efficiency and have been attempted for photo-thermal distillation. Although a high photo-thermal conversion efficiency has been realized, however, it is more challenging to prepare photo-thermal evaporating materials with rapid water transport capacity and generating solar steam. In this work, a photo-thermal distillation device was reported by combining a chitosan aerogel with a bio-inspired wood-like oriented porous structure prepared by directional freezing method, and Ti3C2Tx two-dimensional nanosheets coated with polyethyleneimine sprayed on the surface. The ordered microporous structure can quickly transport moisture from the bottom up to the evaporation surface by capillary force. The coating of Ti3C2Tx coated with polyethyleneimine on the evaporation surface has a strong ability to capture sunlight. The evaporation rate reaches 3.99 kg m−2 h−1 under the optical power density of 3000 W m−2 and the efficiency reaches 90%, indicating the broad application prospects as a photo-thermal conversion material for efficiently producing clean fresh water.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271. https://doi.org/10.1126/science.1061051

    Article  CAS  Google Scholar 

  2. Liu C, Lin Y, Dong Y, Wu Y, Bao Y, Yan H, Ma J (2020) Fabrication and investigation on Ag nanowires/TiO2 nanosheets/graphene hybrid nanocomposite and its water treatment performance. Adv Compos Hybrid Mater 3:402–414. https://doi.org/10.1007/s42114-020-00164-2

    Article  CAS  Google Scholar 

  3. Jain B, Hashmi A, Sanwaria S, Singh AK, Susan MA, Singh A (2020) Zinc oxide nanoparticle incorporated on graphene oxide: an efficient and stable photocatalyst for water treatment through the Fenton process. Adv Compos Hybrid Mater 3:231–242. https://doi.org/10.1007/s42114-020-00153-5

    Article  CAS  Google Scholar 

  4. Hagfeldt A, Gratzel M (2000) Molecular photovoltaics. Acc Chem Res 33:269–277. https://doi.org/10.1021/ar980112j

    Article  CAS  Google Scholar 

  5. Schmidt-Mende L, Fechtenkotter A, Mullen K, Moons E, Friend RH, MacKenzie JD (2001) Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science 293:1119–1122. https://doi.org/10.1126/science.293.5532.1119

    Article  CAS  Google Scholar 

  6. Roux L, Hanus J, Francois JC, Sigrist M (1982) The optical properties of titanium nitrides and carbides: spectral selectivity and photothermal conversion of solar energy. Sol Energy Mater 7:299–312. https://doi.org/10.1016/0165-1633(82)90004-1

    Article  CAS  Google Scholar 

  7. Tariq Z, Rehman SU, Zhang XM, Butt FK, Feng S, Ul Haq B, Zheng J, Cheng BW, Li CB (2021) Pristine and Janus monolayers of vanadium dichalcogenides: potential materials for overall water splitting and solar energy conversion. J Mater Sci 56:12270–12284. https://doi.org/10.1007/s10853-021-06069-9

    Article  CAS  Google Scholar 

  8. Wang P (2018) Emerging investigator series: the rise of nano-enabled photothermal materials for water evaporation and clean water production by sunlight. Environ Sci: Nano 5:1078–1089. https://doi.org/10.1039/c8en00156a

    Article  CAS  Google Scholar 

  9. Yang P, Liu K, Chen Q, Li J, Duan J, Xue G, Xu Z, Xie W, Zhou J (2017) Solar-driven simultaneous steam production and electricity generation from salinity. Energy Environ Sci 10:1923–1927. https://doi.org/10.1039/c7ee01804e

    Article  CAS  Google Scholar 

  10. Gao M, Peh CK, Phan HT, Zhu L, Ho GW (2018) Solar absorber gel: localized macronano heat channeling for efficient plasmonic au nanoflowers photothermic vaporization and triboelectric generation. Adv Energy Mater 8:1800711. https://doi.org/10.1002/aenm.201800711

    Article  CAS  Google Scholar 

  11. Li X, Min X, Li J, Xu N, Zhu P, Zhu B, Zhu S, Zhu J (2018) Storage and recycling of interfacial solar steam enthalpy. Joule 2:2477–2484. https://doi.org/10.1016/j.joule.2018.08.008

    Article  Google Scholar 

  12. Zhu L, Gao M, Peh CKN, Wang X, Ho GW (2018) Self-contained monolithic carbon sponges for solar-driven interfacial water evaporation distillation and electricity generation. Adv Energy Mater 8(16):1702149. https://doi.org/10.1002/aenm.201702149

    Article  CAS  Google Scholar 

  13. Chandrashekara M, Yadav A (2017) Water desalination system using solar heat: a review. Renew Sustain Energy Rev 67:1308–1330. https://doi.org/10.1016/j.rser.2016.08.058

    Article  CAS  Google Scholar 

  14. Ni G, Zandavi SH, Javid SM, Boriskina SV, Cooper TA, Chen G (2018) A salt-rejecting floating solar still for low-cost desalination. Energy Environ Sci 11:1510–1519. https://doi.org/10.1039/c8ee00220g

    Article  CAS  Google Scholar 

  15. Yang Y, Zhao R, Zhang T, Zhao K, Xiao P, Ma Y, Ajayan PM, Shi G, Chen Y (2018) Graphene-based standalone solar energy converter for water desalination and purification. ACS Nano 12:829–835. https://doi.org/10.1021/acsnano.7b08196

    Article  CAS  Google Scholar 

  16. Xu F, Weng D, Li X, Li Y, Sun J (2021) Self-healing hydrophilic porous photothermal membranes for durable and highly efficient solar-driven interfacial water evaporation. CCS Chem. Doi: https://doi.org/10.31635/ccschem.021.202101111

  17. Politano A, Argurio P, Di Profio G, Sanna V, Cupolillo A, Chakraborty S, Arafat HA, Curcio E (2017) Photothermal membrane distillation for seawater desalination. Adv Mater 29:1603504. https://doi.org/10.1002/adma.201603504

    Article  CAS  Google Scholar 

  18. Wang Y, Zhang L, Wang P (2016) Self-floating carbon nanotube membrane on macroporous silica substrate for highly efficient solar-driven interfacial water evaporation. ACS Sustain Chem Eng 4:1223–1230. https://doi.org/10.1021/acssuschemeng.5b01274

    Article  CAS  Google Scholar 

  19. Tsilingiridis G, Martinopoulos G, Kyriakis N (2004) Life cycle environmental impact of a thermosyphonic domestic solar hot water system in comparison with electrical and gas water heating. Renew Energy 29:1277–1288. https://doi.org/10.1016/j.renene.2003.12.007

    Article  Google Scholar 

  20. Dupeyrat P, Menezo C, Fortuin S (2014) Study of the thermal and electrical performances of PVT solar hot water system. Energy Build 68:751–755. https://doi.org/10.1016/j.enbuild.2012.09.032

    Article  Google Scholar 

  21. Zheng Y, Bai H, Huang Z, Tian X, Nie FQ, Zhao Y, Zhai J, Jiang L (2010) Directional water collection on wetted spider silk. Nature 463:640–643. https://doi.org/10.1038/nature08729

    Article  CAS  Google Scholar 

  22. Chen H, Zhang P, Zhang L, Liu H, Jiang Y, Zhang D, Han Z, Jiang L (2016) Continuous directional water transport on the peristome surface of Nepenthes alata. Nature 532:85–89. https://doi.org/10.1038/nature17189

    Article  CAS  Google Scholar 

  23. Ju J, Bai H, Zheng Y, Zhao T, Fang R, Jiang L (2012) A multi-structural and multi-functional integrated fog collection system in cactus. Nat Commun 3:1247. https://doi.org/10.1038/ncomms2253

    Article  CAS  Google Scholar 

  24. Zong L, Li M, Li C (2018) Intensifying solar-thermal harvest of low-dimension biologic nanostructures for electric power and solar desalination. Nano Energy 5:308–315. https://doi.org/10.1016/j.nanoen.2018.05.042

    Article  CAS  Google Scholar 

  25. Liu A, Bai H, Xu W (2019) Efficient water transport and solar steam generation via radially, hierarchically structured aerogels. ACS Nano 13:7930–7938. https://doi.org/10.1021/acsnano.9b02331

    Article  CAS  Google Scholar 

  26. Chen C, Li Y, Song J, Yang Z, Kuang Y, Hitz E, Jia C, Gong A, Jiang F, Zhu JY, Yang B, Xie J, Hu L (2017) Highly flexible and efficient solar steam generation device. Adv Mater 29:1701756. https://doi.org/10.1002/adma.201701756

    Article  CAS  Google Scholar 

  27. Liu KK, Jiang Q, Tadepalli S, Raliya R, Biswas P, Naik RR, Singamaneni S (2017) Wood–graphene oxide composite for highly efficient solar steam generation and desalination. ACS Appl Mater Interfaces 9:7675–7681. https://doi.org/10.1021/acsami.7b01307

    Article  CAS  Google Scholar 

  28. Ng VMH, Huang H, Zhou K, Lee PS, Que W, Xu JZ, Kong LB (2017) Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications. J Mater Chem A 5:3039–3068. https://doi.org/10.1039/c7ta90088k

    Article  CAS  Google Scholar 

  29. Ma Y, Liu N, Li L, Hu X, Zou Z, Wang J, Luo S, Gao Y (2017) A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nat Commun 8:1207. https://doi.org/10.1038/s41467-017-01136-9

    Article  CAS  Google Scholar 

  30. Ghidiu M, Lukatskaya MR, Zhao MQ, Gogotsi Y, Barsoum MW (2014) Conductive two-dimensional titanium carbide “clay” with high volumetric capacitance. Nature 516:78–81. https://doi.org/10.1038/nature13970

    Article  CAS  Google Scholar 

  31. Tian Y, Yang C, Que W, He Y, Liu X, Luo Y, Yin X, Kong LB (2017) Ni foam supported quasi-core-shell structure of ultrathin Ti3C2 nanosheets through electrostatic layer-by-layer self-assembly as high rate-performance electrodes of supercapacitors. J Power Sources 369:78–86. https://doi.org/10.1016/j.jpowsour.2017.09.085

    Article  CAS  Google Scholar 

  32. Liu P, Zhou T, Teng Y, Fu L, Hu Y, Lin X, Kong XY, Jiang L, Wen L (2021) Light-induced heat driving active ion transport based on 2D MXene nanofluids for enhancing osmotic energy conversions. CCS Chem 3:1325–1335. Doi: https://doi.org/10.31635/ccschem.020.202000296

  33. Mashtalir O, Cook KM, Mochalin VN, Crowe M, Barsoum MW, Gogotsi Y (2014) Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media. J Mater Chem A 2:14334–14338. https://doi.org/10.1039/c4ta02638a

    Article  CAS  Google Scholar 

  34. Han M, Yin X, Wu H, Hou Z, Song C, Li X, Zhang L, Cheng L (2016) Ti3C2 MXenes with modified surface for high-Performance electromagnetic absorption and shielding in the X-band. ACS Appl Mater Interfaces 8:21011–21019. https://doi.org/10.1021/acsami.6b06455

    Article  CAS  Google Scholar 

  35. Liu J, Zhang HB, Sun R, Liu Y, Liu Z, Zhou A, Yu ZZ (2017) Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv Mater 29:1702367. https://doi.org/10.1002/adma.201702367

    Article  CAS  Google Scholar 

  36. Xuan J, Wang Z, Chen Y, Liang D, Cheng L, Yang X, Liu Z, Ma R, Sasaki T, Geng F (2016) Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance. Angew Chem Int Ed 55:14569–14574. https://doi.org/10.1002/anie.201606643

    Article  CAS  Google Scholar 

  37. Lin H, Wang X, Yu L, Chen Y, Shi J (2017) Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Lett 17:384–391. https://doi.org/10.1021/acs.nanolett.6b04339

    Article  CAS  Google Scholar 

  38. Liu G, Zou J, Tang Q, Yang X, Zhang Y, Zhang Q, Huang W, Chen P, Shao J, Dong X (2017) Surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy. ACS Appl Mater Interfaces 9:40077–40086. https://doi.org/10.1021/acsami.7b13421

    Article  CAS  Google Scholar 

  39. Liu XQ, Zhao XX, Liu Y, Zhang TA (2022) Review on preparation and adsorption properties of chitosan and chitosan composites. Polym Bul 79:2633–2665. https://doi.org/10.1007/s00289-021-03626-9

    Article  CAS  Google Scholar 

  40. Zhang H, Cooper AI (2007) Aligned porous structures by directional freezing. Adv Mater 19:1529–1533. https://doi.org/10.1002/adma.200700154

    Article  CAS  Google Scholar 

  41. Kim K, Yu S, Kang S, Ryu S, Jang J (2019) Three-dimensional solar steam generation device with additional non-photothermal evaporation. Desalination 469:114091. https://doi.org/10.1016/j.desal.2019.114091

    Article  CAS  Google Scholar 

  42. Wang Z, Ye Q, Liang X, Xu J, Chang C, Song C, Shang W, Wu J, Tao P, Deng T (2017) Paper-based membranes on silicone floaters for efficient and fast solar-driven interfacial evaporation under one sun. J Mater Chem A 5:16359–16368. https://doi.org/10.1039/c7ta03262e

    Article  CAS  Google Scholar 

  43. Chen J, Zhang D, He S, Xia G, Wang X, Xiang Q, Wen T, Zhong Z, Liao Y (2021) Thermal insulation design for efficient and scalable solar water interfacial evaporation and purification. J Mater Sci Technol 66:157–162. Doi: https://doi.org/10.1016/j.jmst.2020.05.075

  44. Chen L, Wang H, Kuravi S, Kota K, Park YH, Xu P (2020) Low-cost and reusable carbon black based solar evaporator for effective water desalination. Desalination 483:114412. https://doi.org/10.1016/j.desal.2020.114412

    Article  CAS  Google Scholar 

  45. Fu Y, Wang G, Mei T, Li J, Wang J, Wang X (2017) Accessible graphene aerogel for efficiently harvesting solar energy. ACS Sustainable Chem Eng 5:4665–4671. https://doi.org/10.1021/acssuschemeng.6b03207

    Article  CAS  Google Scholar 

  46. Yu F, Guo Z, Xu Y, Chen Z, Irshad MS, Qian J, Mei T, Wang X (2020) Biomass-derived bilayer solar evaporator with enhanced energy utilization for high-efficiency water generation. ACS Appl Mater Interfaces 12:57155–57164. https://doi.org/10.1021/acsami.0c18671

    Article  CAS  Google Scholar 

  47. Xiong ZC, Zhu YJ, Wang ZY, Chen YQ, Yu HP (2022) Tree-inspired ultralong hydroxyapatite nanowires-based multifunctional aerogel with vertically aligned channels for continuous flow catalysis, water disinfection, and solar energy-driven water purification. Adv Funct Mater 32:2106978. https://doi.org/10.1002/adfm.202106978

    Article  CAS  Google Scholar 

  48. Zhang Q, Li L, Jiang B, Zhang H, He N, Yang S, Tang D, Song Y (2020) Flexible and mildew-resistant wood-derived aerogel for stable and efficient solar desalination. ACS Appl Mater Interfaces 12:28179–28187. https://doi.org/10.1021/acsami.0c05806

    Article  CAS  Google Scholar 

  49. Li J, Yu F, Jiang Y, Wang L, Yang L, Li X, Lü W, Sun X (2021) Photothermal diatomite/carbon nanotube combined aerogel for high-efficiency solar steam generation and wastewater purification. Solar RRL 6:2101011. https://doi.org/10.1002/solr.202101011

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21704022, 21875054), the Natural Science Foundation of Heilongjiang Province of China (LH2020B009) and the Fundamental Research Funds of the Central University (3072021CF1017).

Funding

The National Natural Science Foundation of China, 21704022, Xinyue Zhang; 21875054, Ning Ma, The Natural Science Foundation of Heilongjiang Province of China, LH2020B009, Xinyue Zhang, The Fundamental Research Funds of the Central University, 3072021CF1017, Xinyue Zhang.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinyue Zhang or Ning Ma.

Ethics declarations

Conflict of interest

All of the authors declare no competing financial interests.

Additional information

Handling Editor: Chris Cornelius.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1994 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wan, Y., Meng, X. et al. Bio-inspired MXene coated wood-like ordered chitosan aerogels for efficient solar steam generating devices. J Mater Sci 57, 13962–13973 (2022). https://doi.org/10.1007/s10853-022-07494-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07494-0

Navigation