Skip to main content
Log in

Controlling the sign and magnitude of the nonlinear susceptibility of poled glasses at room temperature

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

For the first time, we have demonstrated the control of the sign and magnitude of the second-order optical nonlinearity (SON) of thermally poled soda-lime glasses with a DC voltage applied to the glass at room temperature. We called this procedure “cold re-poling”. The sign inversion of SON can be provided by a voltage opposite in sign to the one used in thermal poling. Regardless of the sign of cold re-poling voltage, it results in up to tenfold increase in the intensity of the second optical harmonic generated by thermally poled glasses. Moreover, cold re-poling makes it possible to restore and increase the SON of poled glasses degraded after thermal treatment, even if the treatment temperature exceeded 400 °C. The cold re-poling process is relatively slow and takes about ~ 2000s. This time correlates with characteristic time of charging/recharging of a capacitor in RC-circuit, which is represented by the poled region of a glass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Data and code availability

Not applicable.

References

  1. Lepicard A, Bondu F, Kang M et al (2018) Long-lived monolithic micro-optics for multispectral GRIN applications. Sci Rep 8:7388–7396. https://doi.org/10.1038/s41598-018-25481-x

    Article  CAS  Google Scholar 

  2. Fabijanić I, Pervan P, Okorn B et al (2020) Ellipsometry-based study of glass refractive index depth profiles obtained by applying different poling conditions. Appl Opt 59:A69–A74. https://doi.org/10.1364/AO.59.000A69

    Article  Google Scholar 

  3. Kamenskii AN, Reduto IV, Petrikov VD, Lipovskii AA (2016) Effective diffraction gratings via acidic etching of thermally poled glass. Opt Mater 62:250–254. https://doi.org/10.1016/j.optmat.2016.09.074

    Article  CAS  Google Scholar 

  4. He H, Luo J, Qian L et al (2016) Thermal poling of soda-lime silica glass with nonblocking electrodes—part 2: effects on mechanical and mechanochemical properties. J Am Ceram Soc 99:1231–1238. https://doi.org/10.1111/jace.14080

    Article  CAS  Google Scholar 

  5. Lipovskii A, Zhurikhina V, Tagantsev D (2017) 2D-structuring of glasses via thermal poling: a short review. Int J Appl Glass Sci 9:24–28. https://doi.org/10.1111/ijag.12273

    Article  CAS  Google Scholar 

  6. Lubyankina EA, Raskhodchikov DV, Babich ES et al (2021) Peculiarities of ion-exchange in poled glasses. J Phys Conf Ser 2086:012152. https://doi.org/10.1088/1742-6596/2086/1/012152

    Article  Google Scholar 

  7. Beresna M, Kazansky PG, Deparis O et al (2010) Poling-assisted fabrication of plasmonic nanocomposite devices in glass. Adv Mater 22:4368–4372. https://doi.org/10.1002/adma.201001222

    Article  CAS  Google Scholar 

  8. Zhurikhina VV, Brunkov PN, Melehin VG et al (2012) Self-assembled silver nanoislands formed on glass surface via out-diffusion for multiple usages in SERS applications. Nanoscale Res Lett 7:676–681. https://doi.org/10.1186/1556-276X-7-676

    Article  CAS  Google Scholar 

  9. Lipovskii AA, Melehin VG, Petrikov VD (2006) Electric-field-induced bleaching of ion-exchanged glasses containing copper nanoparticles. Tech Phys Lett 32:275–277. https://doi.org/10.1134/S1063785006030308

    Article  CAS  Google Scholar 

  10. Russell PS, Pannell CN, Kazansky PG, Dong L (1995) Pockels effect in thermally poled silica optical fibres. Electron Lett 31:62–63. https://doi.org/10.1049/el:19950036

    Article  Google Scholar 

  11. Myers RA, Mukherjee N, Brueck SRJ (1991) Large second-order nonlinearity in poled fused silica. Opt Lett 16:1732–1734. https://doi.org/10.1364/OL.16.001732

    Article  CAS  Google Scholar 

  12. Mukherjee N, Myers RA, Brueck SRJ (1994) Dynamics of second-harmonic generation in fused silica

  13. Lasbrugnas C, Thomas P, Masson O et al (2009) Second harmonic generation of thermally poled tungsten tellurite glass. Opt Mater 31:775–780. https://doi.org/10.1016/j.optmat.2008.08.002

    Article  CAS  Google Scholar 

  14. Liu Q, Gao C, Li H, Zhao X (2009) The generation and stability of second-harmonic in electron-beam irradiated GeS2–In2S3–CdS chalcogenide glasses. Solid State Commun 149:266–268. https://doi.org/10.1016/j.ssc.2008.12.011

    Article  CAS  Google Scholar 

  15. Shivachev BL, Petrov T, Yoneda H et al (2009) Synthesis and nonlinear optical properties of TeO2–Bi2O3–GeO2 glasses. Scr Mater 61:493–496. https://doi.org/10.1016/j.scriptamat.2009.05.006

    Article  CAS  Google Scholar 

  16. Qiu M, Pi F, Orriols G, Bibiche M (1998) Signal damping of second-harmonic generation in poled soda-lime silicate glass. J Opt Soc Am B 15:1362–1365. https://doi.org/10.1364/JOSAB.15.001362

    Article  CAS  Google Scholar 

  17. Guillet de Chatellus H, Freysz E (2001) Measurement of the third-order susceptibility of glasses by EFISH of femtosecond pulses. Opt Express 9:586–591. https://doi.org/10.1364/OE.9.000586

    Article  CAS  Google Scholar 

  18. Reshetov I, Scherbak S, Tagantsev D et al (2022) Giant enhancement of optical second harmonic in poled glasses by cold repoling. J Phys Chem Lett 13:5932–5937. https://doi.org/10.1021/acs.jpclett.2c01440

    Article  CAS  Google Scholar 

  19. Chen H-Y, Lin H-Y (2019) Thermal poling induced second-order optical nonlinearity in phosphosilicate glass thin films. J Mod Opt 66:2053–2062. https://doi.org/10.1080/09500340.2019.1691276

    Article  CAS  Google Scholar 

  20. Le Calvez A, Freysz E, Ducasse A (1998) A model for second harmonic generation in poled glasses. Eur Phys J D At Mol Opt Phys 1:223–226. https://doi.org/10.1007/s100530050084

    Article  Google Scholar 

  21. Reshetov I, Kaasik V, Kan G et al (2022) SHG in micron-scale layers of glasses: electron beam irradiation vs. thermal poling. Photonics 9:733–744. https://doi.org/10.3390/photonics9100733

    Article  CAS  Google Scholar 

  22. Yudistira D, Faccio D, Corbari C et al (2008) Electric surface potential and frozen-in field direct measurements in thermally poled silica. Appl Phys Lett 92:012912. https://doi.org/10.1063/1.2827175

    Article  CAS  Google Scholar 

  23. Dussauze M, Rodriguez V, Adamietz F et al (2016) Accurate second harmonic generation microimprinting in glassy oxide materials. Adv Opt Mater 4:929–935. https://doi.org/10.1002/adom.201500759

    Article  CAS  Google Scholar 

  24. Zhang S, Yao J, Liu W et al (2008) Second harmonic generation of periodically poled potassium titanyl phosphate waveguide using femtosecond laser pulses. Opt Express 16:14180–14185. https://doi.org/10.1364/OE.16.014180

    Article  CAS  Google Scholar 

  25. Niu Y, Yan X, Chen J et al (2022) Research progress on periodically poled lithium niobate for nonlinear frequency conversion. Infrared Phys Technol 125:104243. https://doi.org/10.1016/j.infrared.2022.104243

    Article  CAS  Google Scholar 

  26. Agar Scientific (2023) Microscope slides. https://www.agarscientific.com/fr/high-quality-microscope-slides. Accessed 22 Feb 2023

  27. Scherbak SA, Kaasik VP, Zhurikhina VV, Lipovskii AA (2022) Poling of glasses using resistive barrier discharge plasma. Materials 15:8620–8630. https://doi.org/10.3390/ma15238620

    Article  CAS  Google Scholar 

  28. Luo J, He H, Podraza NJ et al (2016) Thermal poling of soda-lime silica glass with nonblocking electrodes—part 1: effects of sodium ion migration and water ingress on glass surface structure. J Am Ceram Soc 99:1221–1230. https://doi.org/10.1111/jace.14081

    Article  CAS  Google Scholar 

  29. Reshetov IV, Kaasik VP, Lipovskii AA, Tagantsev DK (2020) To the issue of the second harmonic generation in poled silicate glasses. J Phys Conf Ser 1695:012131. https://doi.org/10.1088/1742-6596/1695/1/012131

    Article  Google Scholar 

  30. Luo J, Huynh H, Pantano CG, Kim SH (2016) Hydrothermal reactions of soda lime silica glass—revealing subsurface damage and alteration of mechanical properties and chemical structure of glass surfaces. J Non Cryst Solids 452:93–101. https://doi.org/10.1016/j.jnoncrysol.2016.08.021

    Article  CAS  Google Scholar 

  31. Jerphagnon J, Kurtz SK (1970) Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals. J Appl Phys 41:1667–1681. https://doi.org/10.1063/1.1659090

    Article  Google Scholar 

  32. Scherbak SA, Kaasik VP, Zhurikhina VV, Lipovskii AA (2021) SEM-visualization of a spatial charge and a giant potassium peak in a corona-poled glass. J Phys Condens Matter 33:235702. https://doi.org/10.1088/1361-648X/abf383

    Article  CAS  Google Scholar 

  33. Dell JM, Joyce MJ, Stone GO (1994) Erasure of poling-induced second-order optical nonlinearities in silica by UV exposure. SPIE 2289:185–193. https://doi.org/10.1117/12.188711

    Article  CAS  Google Scholar 

  34. Nasu H, Okamoto H, Kurachi K et al (1995) Second-harmonic generation from electrically poled SiO2 glasses: effects of OH concentration, defects, and poling conditions. J Opt Soc Am B 12:644–649. https://doi.org/10.1364/JOSAB.12.000644

    Article  CAS  Google Scholar 

  35. Imai H, Horinouchi S, Asakuma N et al (1998) Effects of introduction of sodium and water on second-order nonlinearity in poled synthetic silica glass. J Appl Phys 84:5415–5418. https://doi.org/10.1063/1.368795

    Article  CAS  Google Scholar 

  36. Wada N, Morinaga K, Takebe H et al (1997) Effect of minority species on thermal poling of fused silica glasses. In: Bragg gratings, photosensitivity, and poling in glass fibers and waveguides: applications and fundamentals. Optica Publishing Group, Washington, p BTuC.3

  37. Doremus RH (2005) Mechanism of electrical polarization of silica glass. Appl Phys Lett 87:1–2. https://doi.org/10.1063/1.2140090

    Article  CAS  Google Scholar 

  38. Dussauze M, Rodriguez V, Lipovskii A et al (2010) How does thermal poling affect the structure of soda-lime glass? J Phys Chem C 114:12754–12759. https://doi.org/10.1021/jp1033905

    Article  CAS  Google Scholar 

  39. Lepicard A, Cardinal T, Fargin E et al (2016) Micro-structuring the surface reactivity of a borosilicate glass via thermal poling. Chem Phys Lett 664:10–15. https://doi.org/10.1016/j.cplett.2016.09.077

    Article  CAS  Google Scholar 

  40. Redkov A, Kaasik V, Melehin V, Lipovskii A (2021) Modification of soda-lime silicate glass under corona poling in air and nitrogen atmosphere. J Non Cryst Solids 554:120599. https://doi.org/10.1016/j.jnoncrysol.2020.120599

    Article  CAS  Google Scholar 

  41. Davis KM, Tomozawa M (1996) An infrared spectroscopic study of water-related species in silica glasses. J Non Cryst Solids 201:177–198. https://doi.org/10.1016/0022-3093(95)00631-1

    Article  CAS  Google Scholar 

  42. Efimov AM, Pogareva VG, Shashkin AV (2003) Water-related bands in the IR absorption spectra of silicate glasses. J Non Cryst Solids 332:93–114. https://doi.org/10.1016/j.jnoncrysol.2003.09.020

    Article  CAS  Google Scholar 

  43. Ngo D, Liu H, Chen Z et al (2020) Hydrogen bonding interactions of H2O and SiOH on a boroaluminosilicate glass corroded in aqueous solution. Npj Mater Degrad 4:1–5. https://doi.org/10.1038/s41529-019-0105-2

    Article  Google Scholar 

  44. Amma S, Kim SH, Pantano CG (2016) Analysis of water and hydroxyl species in soda lime glass surfaces using attenuated total reflection (ATR)-IR spectroscopy. J Am Ceram Soc 99:128–134. https://doi.org/10.1111/jace.13856

    Article  CAS  Google Scholar 

  45. Doremus RH (1964) Exchange and diffusion of ions in glass. J Phys Chem 68:2212–2218. https://doi.org/10.1021/j100790a031

    Article  CAS  Google Scholar 

  46. Quiquempois Y, Kudlinski A, Martinelli G et al (2005) Near-surface modification of the third-order nonlinear susceptibility in thermally poled InfrasilTM glasses. Appl Phys Lett 86:181106–181167. https://doi.org/10.1063/1.1921348

    Article  CAS  Google Scholar 

  47. Qiu M, Mizunami T, Takagaki Y (1999) Second-harmonic generation from the cathode-side face in a poled glass. SPIE Proc 3793:163–170. https://doi.org/10.1117/12.351411

    Article  CAS  Google Scholar 

  48. Qiu M, Mizunami T, Takagaki Y et al (1999) Study of the second-order susceptibility from the cathode-side face of poled glasses. J Non Cryst Solids 255:250–253. https://doi.org/10.1016/S0022-3093(99)00480-9

    Article  CAS  Google Scholar 

  49. Cassidy A, Jørgensen MRV, Glavic A et al (2021) A mechanism for ageing in a deeply supercooled molecular glass. Chem Commun 57:6368–6371. https://doi.org/10.1039/D1CC01639C

    Article  CAS  Google Scholar 

  50. Okada K, Yao M, Hiejima Y et al (1999) Dielectric relaxation of water and heavy water in the whole fluid phase. J Chem Phys 110:3026–3036. https://doi.org/10.1063/1.477897

    Article  CAS  Google Scholar 

  51. Penninck L, Steinbacher F, Krause R, Neyts K (2012) Determining emissive dipole orientation in organic light emitting devices by decay time measurement. Org Electron 13:3079–3084. https://doi.org/10.1016/j.orgel.2012.09.014

    Article  CAS  Google Scholar 

  52. Ko IJ, Lee H, Park JH et al (2019) An accurate measurement of the dipole orientation in various organic semiconductor films using photoluminescence exciton decay analysis. Phys Chem Chem Phys 21:7083–7089. https://doi.org/10.1039/C9CP00965E

    Article  CAS  Google Scholar 

  53. Johari GP, Jones SJ (1978) The orientation polarization in hexagonal ice parallel and perpendicular to the c-axis. J Glaciol 21:259–276. https://doi.org/10.3189/S0022143000033463

    Article  CAS  Google Scholar 

  54. Roth TA (1971) Dielectric relaxation of ZnF 2:LiF and its crystallographic orientation dependence. J Appl Phys 42:246–249. https://doi.org/10.1063/1.1659575

    Article  CAS  Google Scholar 

  55. Fokine M, Ferraris M, Carvalho ICS (2007) Thermal poling of glass—a nonlinear ionic RC circuit. In: Bragg gratings, photosensitivity, and poling in glass waveguides. OSA, Washington, p JWBPDP6

  56. Koroleva E, Reshetov I, Babich E et al (2022) Peculiar electric properties of polarized layer in alkaline silicate glasses. J Am Ceram Soc 105:3418–3427. https://doi.org/10.1111/jace.18324

    Article  CAS  Google Scholar 

  57. Vu TTN, Teyssedre G, Le RS, Laurent C (2017) Maxwell-Wagner effect in multi-layered dielectrics: interfacial charge measurement and modelling. Technologies 5:27–42. https://doi.org/10.3390/technologies5020027

    Article  Google Scholar 

  58. Mehrer H (2016) Diffusion and ion conduction in cation-conducting oxide glasses. Diffus Found 6:59–106. https://doi.org/10.4028/www.scientific.net/DF.6.59

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Ministry of Science and Higher Education of Russian Federation for supporting research within the FSRM-2023-009 project.

Author information

Authors and Affiliations

Authors

Contributions

AL contributed to conceptualization; VK contributed to methodology; OP contributed to software; SS contributed to formal analysis; IR and GK contributed to investigation; AL contributed to writing—original draft preparation; AL and VM contributed to writing—review and editing.

Corresponding author

Correspondence to Ilya Reshetov.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Additional information

Handling Editor: Catalin Croitoru.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reshetov, I., Scherbak, S., Kan, G. et al. Controlling the sign and magnitude of the nonlinear susceptibility of poled glasses at room temperature. J Mater Sci 58, 11859–11871 (2023). https://doi.org/10.1007/s10853-023-08729-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08729-4

Navigation