Skip to main content

Advertisement

Log in

Enhanced photophysical and electrochemical properties of 2D layered rGO and MoS\(_2\) integrated polypyrrole (rGO-PPy-MoS\(_2\)) composite

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The integration of two-dimensional molybdenum disulfide (MoS\(_2\)) and reduced graphene oxide (rGO) into a polypyrrole (PPy) matrix appears to be a productive method for improving the structural, optical, and electrochemical properties of pure PPy. rGO-PPy-MoS\(_2\) composite was synthesized via in-situ polymerization process. The formation of the composite was confirmed using X-ray diffraction, Fourier transform infrared, and Raman investigations. Field emission scanning electron microscopy, transmission electron microscopy, and EDX were utilized to analyze the surface morphology and elemental analyses of rGO-PPy-MoS\(_2\) composite, because of their strong charge transport properties, the composites display both micro and meso-porosity with increased surface area. Elemental purity and composition of the synthesized materials were characterized through X-ray photoelectron spectroscopy. The optimized composites’ band gap was 1.63 eV, with refractive index of 2.45 showed good optical conductivity and their photoluminescence characteristics reveal blue emission at 445 nm with color purity of 77.1%. The composite’s electrochemical characteristics provide an excellent potential response in the 0–1 V range. The specific capacitance of rGO-PPy-MoS\(_2\) showed 235.6 F/g with maximum power density of 4300 W/kg and energy density of 11.61 Wh/kg. All of these findings point to rGO-PPy-MoS\(_2\) composite as a potential emissive layer material with suitable materials for supercapacitor application.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Research data policy and data availability statements

The datasets generated during and/or analyses during the current study are available from the corresponding author on reasonable request.

References

  1. Raza W, Ali F, Raza N, Luo Y, Kim KH, Yang J, Kumar S, Mehmood A, Kwon EE (2018) Recent advancements in supercapacitor technology. Nano Energy 52:441–473. https://doi.org/10.1016/j.nanoen.2018.08.013. ISSN 2211-2855

  2. Vangari M, Pryor T, Jiang L (2013) Supercapacitors: review of materials and fabrication methods. J Energy Eng 139(2):72–79. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000102

    Article  Google Scholar 

  3. Zang J, Cao C, Feng Y, Liu J, Zhao X (2014) Stretchable and high-performance supercapacitors with crumpled graphene papers. Sci Rep 4:6492

    Article  CAS  Google Scholar 

  4. WaWang S, Wei T, Qi Z (2008) Supercapacitor energy storage technology and its application in renewable energy power generation system. In: Proceedings of ISES World Congress 2007, vol I–V). Springer, pp 2805–2809

  5. Turner JA (1999) A realizable renewable energy future. Science 285(5428):687–689. https://doi.org/10.1126/science.285.5428.687.

    Article  CAS  Google Scholar 

  6. Lee D-H, Choi JS, Chae H, Chung C-H, Cho SM (2008) Highly efficient phosphorescent polymer OLEDs fabricated by screen printing. Displays 29(5):436–439. https://doi.org/10.1016/j.displa.2008.02.006. ISSN 0141-9382

  7. Elumalai P, Charles J (2023) Investigation of structural and optical properties of ternary polyaniline-polypyrrole-nickel oxide (PANI-PPy-NiO) nanocomposite for optoelectronic devices. Polym Int 72(2):176–188

    Article  CAS  Google Scholar 

  8. Chidi EA, Rotimi SE, Sinha RS, Yskandar H, Joseph AG, Jimmy LO (2023) Fabrication and investigation of electrically conductive spark plasma sintered polypyrrole-based MXene-Ti3C2Tx hybrid nanoarchitectonics for electrode material. J Mater Sci: Mater Electron 34(3):168

    Google Scholar 

  9. Nayak D, Choudhary RB (2022) Influence of ZnS on the structural, morphological, optical and thermal properties of polyindole for an emissive layer. Inorg Chem Commun 144:109824. https://doi.org/10.1016/j.inoche.2022.109824. ISSN 1387-7003

  10. Nayak D, Choudhary RB (2023) A survey of the structure, fabrication, and characterization of advanced organic light emitting diodes. Microelectron Reliab 144:114959. https://doi.org/10.1016/j.microrel.2023.114959. ISSN 0026-2714

  11. Kim S, Jang Lindy K, Park Hyun S, Young LJ (2016) Electrochemical deposition of conductive and adhesive polypyrrole-dopamine films. Sci Rep 6(30475):07. https://doi.org/10.1038/srep30475

    Article  CAS  Google Scholar 

  12. An H, Wang Y, Wang X, Zheng L, Wang X, Yi L, Bai L, Zhang X (2010) Polypyrrole/carbon aerogel composite materials for supercapacitor. J Power Sour 195(19):6964–6969. https://doi.org/10.1016/j.jpowsour.2010.04.074. ISSN 0378-7753

  13. Arbizzani C, Mastragostino M, Meneghello L (1996) Polymer-based redox supercapacitors: a comparative study. Electrochim Acta 41(1):21–26. https://doi.org/10.1016/0013-4686(95)00289-Q. ISSN 0013-4686

  14. Moon H, Lee H, Kwon J, Suh YD, Kim DK, Ha I, Yeo J, Hong S, Ko SH (2017) Ag/Au/polypyrrole core-shell nanowire network for transparent, stretchable and flexible supercapacitor in wearable energy devices. Sci Rep 7:41981

    Article  CAS  Google Scholar 

  15. Khan AA, Alam MM (2005) Preparation, characterization and analytical applications of a new and novel electrically conducting fibrous type polymeric-inorganic composite material: polypyrrole th(iv) phosphate used as a cation-exchanger and pb(ii) ion-selective membrane electrode. Mater Res Bull 40(2):289–305. https://doi.org/10.1016/j.materresbull.2004.10.014. ISSN 0025-5408

  16. Kumar S, Choudhary RB (2022) Influence of mno2 nanoparticles on the optical properties of polypyrrole matrix. Mater Sci Semicond Process 139:106322. https://doi.org/10.1016/j.mssp.2021.106322. ISSN 1369-8001

  17. Akbarzadeh R, Ayeleru OO, Ibrahim Q, Olubambi PA, Ndungu P (2022) Prediction of electronic properties of novel ZnS-ZnO-recycled expanded polystyrene nanocomposites by DFT. Heliyon 8(2):e08903. https://doi.org/10.1016/j.heliyon.2022.e08903. ISSN 2405-8440

  18. Chang K, Chen W (2011) In situ synthesis of MoS 2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. Chem Commun 47(14):4252–4254

    Article  CAS  Google Scholar 

  19. Weng B, Zhang X, Zhang N, Tang Z-R, Yi-Jun X (2015) Two-dimensional MoS\(_2\) nanosheet-coated Bi\(_2\)S\(_3\) discoids: synthesis, formation mechanism, and photocatalytic application. Langmuir 31(14):4314–4322

    Article  CAS  Google Scholar 

  20. Zhou J, Qin J, Zhang X, Shi C, Liu E, Li J, Zhao N, He C (2015) 2d space-confined synthesis of few-layer MoS\(_2\) anchored on carbon nanosheet for lithium-ion battery anode. ACS Nano 9(4):3837–3848

    Article  CAS  Google Scholar 

  21. Lian M, Wu X, Wang Q, Zhang W, Wang Y (2017) Hydrothermal synthesis of polypyrrole/MoS\(_2\) intercalation composites for supercapacitor electrodes. Ceram Int 43(13):9877–9883. https://doi.org/10.1016/j.ceramint.2017.04.171. ISSN 0272-8842

  22. Gai L, Zhao Y, Song G, An Q, Xiao Z, Zhai S, Li Z (2020) Construction of core-shell PPy@ MoS\(_2\) with nanotube-like heterostructures for electromagnetic wave absorption: assembly and enhanced mechanism. Compos Part A: Appl Sci Manuf 136:105965. https://doi.org/10.1016/j.compositesa.2020.105965. ISSN 1359-835X

  23. Kim YK, Jeon H, Han D, Shin KY (2021) High-yield preparation of molybdenum disulfide/polypyrrole hybrid nanomaterial with non-covalent interaction and its supercapacitor application. J Alloys Compd 868:159263. https://doi.org/10.1016/j.jallcom.2021.159263. ISSN 0925-8388

  24. Hao J, Liu H, Han S, Lian J (2021) Mos2 nanosheet-polypyrrole composites deposited on reduced graphene oxide for supercapacitor applications. ACS Appl Nano Mater 4(2):1330–1339. https://doi.org/10.1021/acsanm.0c02899

    Article  CAS  Google Scholar 

  25. Mohammad Faisal Umar and Abu Nasar (2018) Reduced graphene oxide/polypyrrole/nitrate reductase deposited glassy carbon electrode (GCE/RGO/PPy/NR): biosensor for the detection of nitrate in wastewater. Appl Water Sci 8(7):211

    Article  Google Scholar 

  26. Tang G, Sun J, Wei C, Wu K, Ji X, Liu S, Tang H, Li C (2012) Synthesis and characterization of flowerlike MoS\(_2\) nanostructures through CTAB-assisted hydrothermal process. Mater Lett 86:9–12. https://doi.org/10.1016/j.matlet.2012.07.014. ISSN 0167-577X

  27. Borgogoi AT, Borah DJ, Mostako ATT (2023) Radio-frequency controlled crystalline phase transformation of MoS\(_2\) thin film fabricated by unique vapour-plasma mixing technique. Phys B: Cond Matter 660: 414896. https://doi.org/10.1016/j.physb.2023.414896

  28. Chougule MA, Pawar SG, Godse PR, Mulik RN, Sen S, Patil VB (2011) Synthesis and characterization of polypyrrole (PPy) thin films. Soft Nanosci Lett 1(01):6

    Article  CAS  Google Scholar 

  29. Bindu P, Thomas S (2014) Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J Theor Appl Phys 8:123–134

    Article  Google Scholar 

  30. Kumar A, Mukherjee S, Sahare S, Choubey RK (2021) Influence of deposition time on the properties of ZnS/p-Si heterostructures. Mater Sci Semicond Process 122:105471

    Article  CAS  Google Scholar 

  31. Tomaev VV, Levin KL, Stoyanova TV, Syrkov AG (2019) Synthesis and study of a polypyrrole-aluminum oxide nanocomposite film on an aluminum surface. Glass Phys Chem 45(4):291–297. https://doi.org/10.1134/S1087659619040126

    Article  CAS  Google Scholar 

  32. Lingappan N, Gal YS, Lim KT (2013) Synthesis of reduced graphene oxide/polypyrrole conductive composites. Mol Cryst Liq Cryst 585(1):60–66. https://doi.org/10.1080/15421406.2013.849510

    Article  CAS  Google Scholar 

  33. Fernández Romero AJ, López Cascales JJ, Otero TF (2005) In situ FTIR spectroscopy study of the break-in phenomenon observed for PPy/PVS films in acetonitrile. J Phys Chem B 109(44):21078–21085. https://doi.org/10.1021/jp054026u. PMID: 16853730

  34. Nantao H, Yang Z, Wang Y, Zhang L, Wang Y, Huang X, Wei H, Wei L, Zhang Y (2013) Ultrafast and sensitive room temperature NH3 gas sensors based on chemically reduced graphene oxide. Nanotechnology 25(2):025502. https://doi.org/10.1088/0957-4484/25/2/025502

    Article  CAS  Google Scholar 

  35. Chaiyakun S, Witit-Anun N, Nuntawong N, Chindaudom P, Oaew S, Kedkeaw C, Limsuwan P et al (2012) Preparation and characterization of graphene oxide nanosheets. Proced Eng 32:759–764

    Article  Google Scholar 

  36. Shahriary L, Athawale AA (2014) Graphene oxide synthesized by using modified hummers approach. Int J Renew Energy Environ Eng 2(01):58–63

    Google Scholar 

  37. Escobar-Alarcón L, Espinosa-Pesqueira ME, Solis-Casados DA, Gonzalo J, Solis J, Martinez-Orts M, Haro-Poniatowski E (2018) Two-dimensional carbon nanostructures obtained by laser ablation in liquid: effect of an ultrasonic field. Appl Phys A 124(2):141

    Article  Google Scholar 

  38. Dakshinamoorthy P, Vaithilingam S (2017) Platinum-copper doped poly(sulfonyldiphenol/cyclophosphazene/benzidine)-graphene oxide composite as an electrode material for single stack direct alcohol alkaline fuel cells. RSC Adv 7:34922–34932. https://doi.org/10.1039/C7RA04525E

    Article  CAS  Google Scholar 

  39. Rajender G, Giri PK (2016) Formation mechanism of graphene quantum dots and their edge state conversion probed by photoluminescence and Raman spectroscopy. J Mater Chem C 4:10852–10865. https://doi.org/10.1039/C6TC03469A

    Article  CAS  Google Scholar 

  40. Rice C, Young RJ, Zan R, Bangert U, Wolverson D, Georgiou T, Jalil R, Novoselov KS (2013) Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS\(_{2}\). Phys Rev B 87:081307. https://doi.org/10.1103/PhysRevB.87.081307

    Article  CAS  Google Scholar 

  41. Ali Y, Kumar V, Sonkawade RG, Dhaliwal AS, Swart HC (2014) Gamma radiation induced modifications in Au-polypyrrole nanocomposites: detailed Raman and X-ray studies. Vacuum 99:265–271. https://doi.org/10.1016/j.vacuum.2013.06.016. ISSN 0042-207X

  42. Kalambate PK, Dar RA, Karna SP, Srivastava AK (2015) High performance supercapacitor based on graphene-silver nanoparticles-polypyrrole nanocomposite coated on glassy carbon electrode. J Power Sour 276:262–270. https://doi.org/10.1016/j.jpowsour.2014.11.130. ISSN 0378-7753

  43. Bora C, Dolui SK (2012) Fabrication of polypyrrole/graphene oxide nanocomposites by liquid/liquid interfacial polymerization and evaluation of their optical, electrical and electrochemical properties. Polymer 53(4):923–932. https://doi.org/10.1016/j.polymer.2011.12.054. ISSN 0032-3861

  44. Sing KSW, Williams RT (2004) Physisorption hysteresis loops and the characterization of nanoporous materials. Adsorpt Sci Technol 22(10):773–782

    Article  CAS  Google Scholar 

  45. De Lange MF, Vlugt TJ, Gascon J, Kapteijn F (2014) Adsorptive characterization of porous solids: error analysis guides the way. Microporous Mesoporous Mater 200:199–215

    Article  Google Scholar 

  46. Dubal DP, Chodankar NR, Caban-Huertas Z, Wolfart F, Vidotti M, Holze R, Lokhande CD, Gomez-Romero P (2016) Synthetic approach from polypyrrole nanotubes to nitrogen doped pyrolyzed carbon nanotubes for asymmetric supercapacitors. J Power Sour 308:158–165. https://doi.org/10.1016/j.jpowsour.2016.01.074. ISSN 0378-7753

  47. Su C, Wang L, Xu L, Zhang C (2013) Synthesis of a novel ferrocene-contained polypyrrole derivative and its performance as a cathode material for li-ion batteries. Electrochim Acta 104:302–307. https://doi.org/10.1016/j.electacta.2013.04.127. ISSN 0013-4686

  48. Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7(11):699–712

    Article  CAS  Google Scholar 

  49. Choudhary RB, Nayak D (2021) Tailoring the properties of 2-D rGO-PPy-ZnS nanocomposite as emissive layer for OLEDs. Optik 231:166336. https://doi.org/10.1016/j.ijleo.2021.166336. ISSN 0030-4026

  50. Kumar S, Nayak D, Ansari S, Bauri J, Choudhary RB (2023) Investigation of structural, optical and thermal properties of TiO\(_2\) reinforced g-C\(_3\)N\(_4\) nanocomposite for emissive layer application. Mater Today: Proc. https://doi.org/10.1016/j.matpr.2023.03.112. ISSN 2214-7853

  51. Kandulna R, Choudhary RB (2017) Robust electron transport properties of PANI/PPY/ZnO polymeric nanocomposites for OLED applications. Optik 144:40–48. https://doi.org/10.1016/j.ijleo.2017.06.094. ISSN 0030-4026

  52. Nayak D, Choudhary RB (2023) Tuning the optical properties of high quantum-yield g-C\(_3\)N\(_4\) with the inclusion of ZnS via fret for high electron-hole recombination. Spectrochim Acta Part A: Mol Biomol Spectrosc 289:122162. https://doi.org/10.1016/j.saa.2022.122162. ISSN 1386-1425

  53. u J, Hu Y, Zeng C, Zhang Y, Huang H, (2017) Polypyrrole decorated BiOI nanosheets: efficient photocatalytic activity for treating diverse contaminants and the critical role of bifunctional polypyrrole. J Colloid Interface Sci 505:719–727. https://doi.org/10.1016/j.jcis.2017.06.054. ISSN 0021-9797

  54. Dey S, Kar AK (2019) Enhanced photoluminescence through Forster resonance energy transfer in polypyrrole-PMMA blends for application in optoelectronic devices. Mater Sci Semicond Process 103:104644. https://doi.org/10.1016/j.mssp.2019.104644. ISSN 1369-8001

  55. Nayak D, Choudhary RB (2019) Augmented optical and electrical properties of PMMA-ZnS nanocomposites as emissive layer for OLED applications. Opt Mater 91:470–481. https://doi.org/10.1016/j.optmat.2019.03.040. ISSN 0925-3467

  56. Li G, Ma S, Huang Z, Cai Z, Xiao P, Huang Y (2021) Concentration-dependent photoluminescence properties of graphene oxide. Adv Photonics Res 2(2):2000045. https://doi.org/10.1002/adpr.202000045

    Article  CAS  Google Scholar 

  57. Krishnamoorthy K, Veerapandian M, Mohan R, Kim S-J (2012) Investigation of Raman and photoluminescence studies of reduced graphene oxide sheets. Appl Phys A 106(3):501–506

    Article  CAS  Google Scholar 

  58. Liu F, Tang T, Feng Q, Li M, Liu Y, Tang N, Zhong W, Youwei D (2014) Tuning photoluminescence of reduced graphene oxide quantum dots from blue to purple. J Appl Phys 115(16):164307. https://doi.org/10.1063/1.4874180

    Article  CAS  Google Scholar 

  59. Choudhary RB, Verma A (2019) Augmented structural, optical and electrical properties of CdS decorated PANI/rGO nanohybrids. Opt Mater 96:109310. https://doi.org/10.1016/j.optmat.2019.109310. ISSN 0925-3467

  60. Piramidowicz R, Jusza A, Lipińska L, Gil M, Mergo P (2019) Re3+:laalo3 doped luminescent polymer composites. Opt Mater 87:35–41. https://doi.org/10.1016/j.optmat.2018.06.018.

    Article  CAS  Google Scholar 

  61. Nandimath M, Bhajantri RF, Naik J, Hebbar V (2019) Effect of rhodamine 6g dye on chromaticity co-ordinates and photoluminescence properties of TiO\(_2\)/PMMA polymer nanocomposites for led applications. J Lumin 207:571–584. https://doi.org/10.1016/j.jlumin.2018.11.048.

    Article  CAS  Google Scholar 

  62. Verma A, Choudhary RB (2020) Influence of CdS nanorods on the optoelectronic properties of 2-dimensional rGO decorated polyindole matrix. Mater Sci Semicond Process 110:104948. https://doi.org/10.1016/j.mssp.2020.104948. ISSN 1369-8001

  63. Krishnaswamy S, Ragupathi V, Raman S, Panigrahi P, Nagarajan GS (2019) Optical properties of p-type polypyrrole thin film synthesized by pulse laser deposition technique: hole transport layer in electroluminescence devices. Optik 194:163034

    Article  CAS  Google Scholar 

  64. Matysiak W, Tański T, Smok W, Gołombek K, Schab-Balcerzak E (2020) Effect of conductive polymers on the optical properties of electrospun polyacrylonitryle nanofibers filled by polypyrrole, polythiophene and polyaniline. Appl Surf Sci 509:145068

    Article  CAS  Google Scholar 

  65. Ren X, Wei Q, Ren P, Wang Y, Peng Y (2018) Hydrothermal-solvothermal cutting integrated synthesis and optical properties of MoS\(_2\) quantum dots. Opt Mater 86:62–65

    Article  CAS  Google Scholar 

  66. Debelo TT, Ujihara M (2020) Effect of simultaneous electrochemical deposition of manganese hydroxide and polypyrrole on structure and capacitive behavior. J Electroanalyt Chem 859:113825. https://doi.org/10.1016/j.jelechem.2020.113825. ISSN 1572-6657

  67. Ansari S, Choudhary RB, Gupta A (2023) Nanoflower copper sulphide intercalated reduced graphene oxide integrated polypyrrole nano matrix as robust symmetric supercapacitor electrode material. J Energy Storage 59:106446. https://doi.org/10.1016/j.est.2022.106446. ISSN 2352-152X

  68. Choudhary RB, Ansari S (2022) Mesoporous complexion and multi-channeled charge storage action of PIn-rGO-TiO2 ternary hybrid materials for supercapacitor applications. J Energy Storage 46:103912. https://doi.org/10.1016/j.est.2021.103912. ISSN 2352-152X

  69. Kim MS, Hsia B, Carraro C, Maboudian R (2014) Flexible micro-supercapacitors with high energy density from simple transfer of photoresist-derived porous carbon electrodes. Carbon 74:163–169. https://doi.org/10.1016/j.carbon.2014.03.019. ISSN 0008-6223

  70. Krishnamoorthy K, Veerasubramani GK, Radhakrishnan S, Kim SJ (2014) Supercapacitive properties of hydrothermally synthesized sphere like MoS\(_2\) nanostructures. Mater Res Bull 50:499–502. https://doi.org/10.1016/j.materresbull.2013.11.019. ISSN 0025-5408

  71. Isacfranklin M, Princy LE, Rathinam Y, Kungumadevi L, Ravi G, Al-Sehemi AG (2022) Rare earth-doped MoS\(_2\) for supercapacitor application. Energy & Fuels 36(12):6476–6482. https://doi.org/10.1021/acs.energyfuels.2c00536

  72. El Nady J, Shokry A, Marwa Khalil S, Ebrahim AME, Anas M (2022) One-step electrodeposition of a polypyrrole/NiO nanocomposite as a supercapacitor electrode. Sci Rep 12(1):1–10

    Google Scholar 

  73. Liu J, Wang Z, Li S, Wang D, Zheng Z et al (2022) Rational design of freestanding and high-performance thick electrode from carbon foam modified with polypyrrole/polydopamine for supercapacitors. Chem Eng J 447:137562.

  74. Huang KJ, Wang L, Liu YJ, Wang HB, Liu YM, Wang LL (2013) Synthesis of polyaniline/2-dimensional graphene analog MoS\(_2\) composites for high-performance supercapacitor. Electrochim Acta 109:587–594. https://doi.org/10.1016/j.electacta.2013.07.168. ISSN 0013-4686

Download references

Acknowledgements

The authors would like to express their gratitude to the Indian Institute of Technology (Indian School of Mines) Dhanbad, Jharkhand, India, for providing the research facilities. The authors would also like to thank Indian Institute of Technology Bombay for providing characterization facility.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, methodology, formal analysis and investigation, and writing (Original draft preparation) performed by Debashish Nayak. Review and editing and supervision performed by Ram Bilash Choudhary.

Corresponding author

Correspondence to Ram Bilash Choudhary.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Ethical approval

The authors did not receive support from any organization for the submitted work. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript

Additional information

Handling Editor: Catalin Croitoru.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayak, D., Choudhary, R.B. Enhanced photophysical and electrochemical properties of 2D layered rGO and MoS\(_2\) integrated polypyrrole (rGO-PPy-MoS\(_2\)) composite. J Mater Sci 58, 9160–9180 (2023). https://doi.org/10.1007/s10853-023-08572-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08572-7

Navigation