Skip to main content
Log in

MoS2 decorated with graphene and polyaniline nanocomposite as an electron transport layer for OLED applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The incorporation of two-dimensional MoS2 and GO (graphene oxide) into polyaniline (PANI) matrix emerges as a productive way for the enhancement in electrical and optical assets of pure PANI. The ternary nanocomposite PANI–rGO–MoS2 (PGM) is synthesized via in situ chemical oxidative polymerization of aniline monomer using ammonium persulfate (APS) as an oxidant with varying MoS2 contents. The surface morphological images of PGM nanocomposites declared the coating of PANI nanofibers, and GO sheets over stacked MoS2 sheets are investigated by field emission scanning electron microscope and transmission electron microscope. The interaction between polyaniline, reduced graphene oxide, and molybdenum disulfide was established by Fourier transform infrared spectroscopy and Raman spectroscopy. The bandgap was calculated for optimized PGM3 nanocomposite, nearly 1.21 eV with a relatively slow decay component and a higher non-radiative rate of electron–hole recombination. The photoluminescence spectra of PGM3 nanocomposite showed four bands: violet, blue, green–blue, and green. The chromaticity was observed in the deep blue region with a color purity of 70%. The conductivity of the optimized PGM3 nanocomposite was enhanced by 184.43% as compared to pristine PANI. These results justified that the optimized PGM3 nanocomposite is a suitable candidate as an effective electron transport layer for high performance in organic light-emitting diode (OLED) devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Salehi, S. Ho, Y. Chen, C. Peng, H. Yersin, F. So, Adv. Opt. Mater. 5, 1700197 (2017)

    Article  CAS  Google Scholar 

  2. C. Adachi, M.A. Baldo, M.E. Thompson, S.R. Forrest, J. Appl. Phys. 90, 5048 (2001)

    Article  CAS  Google Scholar 

  3. N.N. Dinh, L.H. Chi, T.T.C. Thuy, D.V. Thanh, T.P. Nguyen, J. Korean Phys. Soc. 53, 802 (2008)

    Article  CAS  Google Scholar 

  4. P. Jiang, W. Zhu, Z. Gan, W. Huang, J. Li, H. Zeng, J. Shi, J. Mater. Chem. 19, 4551 (2009)

    Article  CAS  Google Scholar 

  5. A.P. Kulkarni, C.J. Tonzola, A. Babel, S.A. Jenekhe, Chem. Mater. 16, 4556 (2004)

    Article  CAS  Google Scholar 

  6. A.K. Thakur, R.B. Choudhary, M. Majumder, G. Gupta, M.V. Shelke, J. Electroanal. Chem. 782, 278 (2016)

    Article  CAS  Google Scholar 

  7. H. Sasabe, J. Kido, Chem. Mater. 23, 621 (2011)

    Article  CAS  Google Scholar 

  8. M.-L. Tsai, S.-H. Su, J.-K. Chang, D.-S. Tsai, C.-H. Chen, C.-I. Wu, L.-J. Li, L.-J. Chen, J.-H. He, ACS Nano 8, 8317 (2014)

    Article  CAS  Google Scholar 

  9. H. Fang, S. Chuang, T.C. Chang, K. Takei, T. Takahashi, A. Javey, Nano Lett. 12, 3788 (2012)

    Article  CAS  Google Scholar 

  10. J. Pu, Y. Yomogida, K.-K. Liu, L.-J. Li, Y. Iwasa, T. Takenobu, Nano Lett. 12, 4013 (2012)

    Article  CAS  Google Scholar 

  11. T. Wang, Y.-Q. Xu, Electronics 5, 93 (2016)

    Article  CAS  Google Scholar 

  12. M.M. Perera, M.-W. Lin, H.-J. Chuang, B.P. Chamlagain, C. Wang, X. Tan, M.M.-C. Cheng, D. Tománek, Z. Zhou, ACS Nano 7, 4449 (2013)

    Article  CAS  Google Scholar 

  13. G.Z. Magda, J. Pető, G. Dobrik, C. Hwang, L.P. Biró, L. Tapasztó, Sci. Rep. 5, 14714 (2015)

    Article  CAS  Google Scholar 

  14. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, F. Wang, Nano Lett. 10, 1271 (2010)

    Article  CAS  Google Scholar 

  15. H. Li, J. Wu, Z. Yin, H. Zhang, Acc. Chem. Res. 47, 1067 (2014)

    Article  CAS  Google Scholar 

  16. V. Gupta, N. Miura, Electrochem. Solid-State Lett. 8, A630 (2005)

    Article  CAS  Google Scholar 

  17. B.J. Waghmode, R. Soni, K.R. Patil, D.D. Malkhede, New J. Chem. 41, 9752 (2017)

    Article  CAS  Google Scholar 

  18. X. Li, C. Zhang, S. Xin, Z. Yang, Y. Li, D. Zhang, P. Yao, A.C.S. Appl, Mater. Interfaces 8, 21373 (2016)

    Article  CAS  Google Scholar 

  19. N.A. Kumar, H.-J. Choi, Y.R. Shin, D.W. Chang, L. Dai, J.-B. Baek, ACS Nano 6, 1715 (2012)

    Article  CAS  Google Scholar 

  20. S.Y. Park, J.E. Lee, Y.H. Kim, J.J. Kim, Y.-S. Shim, S.Y. Kim, M.H. Lee, H.W. Jang, Sens. Actuators B 258, 775 (2018)

    Article  CAS  Google Scholar 

  21. M. Park, T.P. Nguyen, K.S. Choi, J. Park, A. Ozturk, S.Y. Kim, Electron. Mater. Lett. 13, 344 (2017)

    Article  CAS  Google Scholar 

  22. M.M. Bidgoli, M. Mohsennia, F.A. Boroumand, Mater. Res. Bull. 72, 29 (2015)

    Article  CAS  Google Scholar 

  23. S. Cho, M. Kim, J.S. Lee, J. Jang, A.C.S. Appl, Mater. Interfaces 7, 22301 (2015)

    Article  CAS  Google Scholar 

  24. B. Paulchamy, G. Arthi, B.D. Lignesh, J. Nanomed. Nanotechnol. 06, 1 (2015)

    Google Scholar 

  25. M. Manoj, K.M. Anilkumar, B. Jinisha, S. Jayalekshmi, J. Mater. Sci. 28, 14323 (2017)

    CAS  Google Scholar 

  26. N. Hu, Z. Yang, Y. Wang, L. Zhang, Y. Wang, X. Huang, H. Wei, L. Wei, Y. Zhang, Nanotechnology 25, 025502 (2014)

    Article  CAS  Google Scholar 

  27. K.E. Ramohlola, G.R. Monana, M.J. Hato, K.D. Modibane, K.M. Molapo, M. Masikini, S.B. Mduli, E.I. Iwuoha, Composites B 137, 129 (2018)

    Article  CAS  Google Scholar 

  28. J. Li, W. Tang, H. Yang, Z. Dong, J. Huang, S. Li, J. Wang, J. Jin, J. Ma, RSC Adv. 4, 1988 (2014)

    Article  CAS  Google Scholar 

  29. P. Sambyal, A.P. Singh, M. Verma, M. Farukh, B.P. Singh, S.K. Dhawan, RSC Adv. 4, 12614 (2014)

    Article  CAS  Google Scholar 

  30. R. Thangappan, S. Kalaiselvam, A. Elayaperumal, R. Jayavel, M. Arivanandhan, R. Karthikeyan, Y. Hayakawa, Dalton Trans. 45, 2637 (2016)

    Article  CAS  Google Scholar 

  31. Y. Yu, C. Li, Y. Liu, L. Su, Y. Zhang, L. Cao, Sci. Rep. 3, 1866 (2013)

    Article  CAS  Google Scholar 

  32. Y. Zhang, J. Liu, Y. Zhang, J. Liu, Y. Duan, RSC Adv. 7, 54031 (2017)

    Article  CAS  Google Scholar 

  33. M. Shanmugam, A. Alsalme, A. Alghamdi, R. Jayavel, J. Photochem. Photobiol. B 163, 216 (2016)

    Article  CAS  Google Scholar 

  34. X. Zhao, X. Xia, S. Yu, C. Wang, Anal. Methods 6, 9375 (2014)

    Article  CAS  Google Scholar 

  35. W. Liu, T. Du, Q. Ru, S. Zuo, Y. Cai, C. Yao, Mater. Res. Bull. 102, 399 (2018)

    Article  CAS  Google Scholar 

  36. N. Maity, A. Mandal, A.K. Nandi, J. Mater. Chem. C 5, 12121 (2017)

    Article  CAS  Google Scholar 

  37. J. Wang, Z. Wu, K. Hu, X. Chen, H. Yin, J. Alloys Compd. 619, 38 (2015)

    Article  CAS  Google Scholar 

  38. M. Majhi, R.B. Choudhary, P. Maji, Polym. Compos. 38, E108 (2017)

    Article  CAS  Google Scholar 

  39. B. Visic, R. Dominko, M.K. Gunde, N. Hauptman, S.D. Skapin, M. Remskar, Nanoscale Res. Lett. 6, 593 (2011)

    Article  Google Scholar 

  40. S. Saha, N. Chaudhary, H. Mittal, G. Gupta, M. Khanuja, Int. Nano Lett. 9, 127 (2019)

    Article  CAS  Google Scholar 

  41. H.S. Abdulla, A.I. Abbo, Int. J. Electrochem. Sci. 7, 10666 (2012)

    CAS  Google Scholar 

  42. R.B. Choudhary, R. Kandulna, Mater. Sci. Semicond. Process. 94, 86 (2019)

    Article  CAS  Google Scholar 

  43. N. Chaudhary, M. Khanuja, S.S. Islam, Polymer 165, 168 (2019)

    Article  CAS  Google Scholar 

  44. R. Kumar, M.O. Ansari, N. Parveen, M. Oves, M.A. Barakat, A. Alshahri, M.Y. Khan, M.H. Cho, RSC Adv. 6, 111308 (2016)

    Article  CAS  Google Scholar 

  45. R. Kandulna, R.B. Choudhary, R. Singh, J. Inorg. Organomet. Polym Mater. 29, 730 (2019)

    Article  CAS  Google Scholar 

  46. A. Kumar, D.K. Singh, J. Manam, J. Mater. Sci. 30, 2360 (2019)

    CAS  Google Scholar 

  47. X. Wang, Z. Zhao, Q. Wu, C. Wang, Q. Wang, L. Yanyan, Y. Wang, J. Mater. Chem. C 4, 8795 (2016)

    Article  CAS  Google Scholar 

  48. G. Mandal, R.B. Choudhary, Res. Chem. Intermed. 45, 3755 (2019)

    Article  CAS  Google Scholar 

  49. B. Purty, R.B. Choudhary, A. Biswas, G. Udayabhanu, Synth. Met. 249, 1 (2019)

    Article  CAS  Google Scholar 

  50. K. Dutta, S.K. De, Phys. Lett. A 361, 141 (2007)

    Article  CAS  Google Scholar 

  51. K.S. Hemalatha, G. Sriprakash, M.V.N. Ambika Prasad, R. Damle, K. Rukmani, J. Appl. Phys. 118, 154103 (2015)

    Article  CAS  Google Scholar 

  52. D.K. Ray, A.K. Himanshu, T.P. Sinha, Indian J. Pure Appl. Phys. 45, 692 (2007)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors express their sincere thanks to the Indian Institute of Technology (Indian School of Mines), Dhanbad, India, for providing constant financial support. The authors also acknowledge DST New Delhi for using a lifetime spectrophotometer (Project No. SR/FST/PSI-004/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gobind Mandal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhary, R.B., Mandal, G. MoS2 decorated with graphene and polyaniline nanocomposite as an electron transport layer for OLED applications. J Mater Sci: Mater Electron 31, 1302–1316 (2020). https://doi.org/10.1007/s10854-019-02643-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02643-9

Navigation