Skip to main content
Log in

Fast fabrication of Janus particles via photo-initiated seeded swelling polymerization and their application in removal of copper(II) ion

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Asymmetric particles (Janus particles) with discrete surface regions owning different chemical compositions or physical shapes have attracted increasing attention in the last two decades. Exploring novel strategies for synthesis of Janus particles is a great challenge due to somewhat complicated process and taking long time. In this work, several micron-scale Janus particles were rapidly prepared by photo-initiated seeded swelling polymerization for the first time, using glycyl methacrylate (GMA) as monomer and pentaerythritol tetraacrylate (PET4A) as crosslinker. After swelling of the seeds, the polymerization could be completed with ultraviolet light of 365 nm for 15 min. The effects of seed amount, molar ratio of monomer to crosslinker, volume ratio and type of porogenic agent and illumination time on Janus particle morphology were systematically investigated, and the resulting Janus particles with semi-raspberry-like morphology could be adjusted. Additionally, Janus particles were modified with a layer of polymer brush by surface-initiated atom transfer radical polymerization. The as-synthesized Janus@poly(GMA)-EDA was utilized for the adsorption of Cu(II) ion, and the adsorption capacity reached 349.6 mg g−1, indicating that Janus@poly(GMA)-EDA exhibited great application potential for heavy metal removal.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Bolisetty S, Peydayesh M, Mezzenga R (2019) Sustainable technologies for water purification from heavy metals: review and analysis. Chem Soc Rev 48:463–487

    Article  CAS  Google Scholar 

  2. Saravanan A, Senthil Kumar P, Jeevanantham S, Karishma S, Tajsabreen B, Yaashikaa PR, Reshma B (2021) Effective water/wastewater treatment methodologies for toxic pollutants removal: processes and applications towards sustainable development. Chemosphere 280:130595

    Article  CAS  Google Scholar 

  3. Syeda HI, Yap PS (2022) A review on three-dimensional cellulose-based aerogels for the removal of heavy metals from water. Sci Total Environ 807:150606

    Article  CAS  Google Scholar 

  4. Bilal M, Shah JA, Ashfaq T, Gardazi SM, Tahir AA, Pervez A, Haroon H, Mahmood Q (2013) Waste biomass adsorbents for copper removal from industrial wastewater-a review. J Hazard Mater 263:322–333

    Article  CAS  Google Scholar 

  5. Li X, Wang C, Zhang J, Liu J, Liu B, Chen G (2020) Preparation and application of magnetic biochar in water treatment: a critical review. Sci Total Environ 711:134847

    Article  CAS  Google Scholar 

  6. Carolin CF, Kumar PS, Saravanan A, Joshiba GJ, Naushad M (2017) Efficient techniques for the removal of toxic heavy metals from aquatic environment: a review. J Environ Chem Eng 5:2782–2799

    Article  CAS  Google Scholar 

  7. Saravanan A, Kumar PS, Hemavathy RV, Jeevanantham S, Harikumar P, Priyanka G, Devakirubai DRA (2022) A comprehensive review on sources, analysis and toxicity of environmental pollutants and its removal methods from water environment. Sci Total Environ 812:152456

    Article  CAS  Google Scholar 

  8. Rafique M, Hajra S, Tahir MB, Gillani SSA, Irshad M (2022) A review on sources of heavy metals, their toxicity and removal technique using physico-chemical processes from wastewater. Environ Sci Pollut Res 29:16772–16781

    Article  CAS  Google Scholar 

  9. Azimi A, Azari A, Rezakazemi M, Ansarpour M (2017) Removal of heavy metals from industrial wastewaters: a review. ChemBioEng Rev 4:37–59

    Article  Google Scholar 

  10. Lata S, Samadder SR (2016) Removal of arsenic from water using nano adsorbents and challenges: a review. J Environ Manage 166:387–406

    Article  CAS  Google Scholar 

  11. Huang C, Wang H, Xu Y, Ma S, Gong B, Ou J (2022) Carbon dot-functionalized macroporous adsorption resin for bifunctional ultra-sensitive detection and fast removal of iron(III) ions. Anal Methods 14:3727–3738

    Article  CAS  Google Scholar 

  12. Li X, Zhang H, Dong J, Ma S, Ou J (2021) One-pot synthesis of glucose-derived carbonaceous material with high hydrophilicity and adsorption capacity as bilirubin adsorbent. J Mater Sci 56:18006–18018

    Article  CAS  Google Scholar 

  13. Yan L, Yang X, Zhang Y, Wu Y, Cheng Z, Darling SB, Shao L (2021) Porous Janus materials with unique asymmetries and functionality. Mater Today 51:626–647

    Article  CAS  Google Scholar 

  14. Bradley LC, Stebe KJ, Lee D (2016) Clickable Janus particles. J Am Chem Soc 138:11437–11440

    Article  CAS  Google Scholar 

  15. Yang J, Li J, Yang P, Xing N, Chen Y, Zuo M, Li T (2022) Three-dimensional hierarchical Aa/Mg(Ni)Al-layered double hydroxide Janus micromotor derived from lotus pollen for active removal of organic pollutant. J Mater Sci 57:10953–10967

    Article  CAS  Google Scholar 

  16. Fan X, Yang J, Loh XJ, Li Z (2019) Polymeric Janus nanoparticles: recent advances in synthetic strategies, materials properties, and applications. Macromol Rapid Comm 40:1800203

    Article  Google Scholar 

  17. Jiang S, Chen Q, Tripathy M, Luijten E, Schweizer KS, Granick S (2010) Janus particle synthesis and assembly. Adv Mater 22:1060–1071

    Article  CAS  Google Scholar 

  18. Hu J, Zhou S, Sun Y, Fang X, Wu L (2012) Fabrication, properties and applications of Janus particles. Chem Soc Rev 41:4356–4378

    Article  CAS  Google Scholar 

  19. Zhang J, Grzybowski BA, Granick S (2017) Janus particle synthesis, assembly, and application. Langmuir 33:6964–6977

    Article  CAS  Google Scholar 

  20. Zhang L, Chen Y, Li Z, Li L, Saint-Cricq P, Li C, Lin J, Wang C, Su Z, Zink JI (2016) Tailored synthesis of octopus-type Janus nanoparticles for synergistic actively-targeted and chemo-photothermal therapy. Angew Chem Int Ed 55:2118–2121

    Article  CAS  Google Scholar 

  21. Li B, Wang M, Chen K, Cheng Z, Chen G, Zhang Z (2015) Synthesis of biofunctional Janus particles. Macromol Rapid Comm 36:1200–1204

    Article  Google Scholar 

  22. Liu Y, Wang J, Shao Y, Deng R, Zhu J, Yang Z (2022) Recent advances in scalable synthesis and performance of Janus polymer/inorganic nanocomposites. Prog Mater Sci 124:100888

    Article  CAS  Google Scholar 

  23. Liang F, Zhang C, Yang Z (2014) Rational design and synthesis of Janus composites. Adv Mater 26:6944–6949

    Article  CAS  Google Scholar 

  24. Battat S, Weitz DA, Whitesides GM (2022) An outlook on microfluidics: the promise and the challenge. Lab Chip 22:530–536

    Article  CAS  Google Scholar 

  25. Wu L, Mendoza-Garcia A, Li Q, Sun S (2016) Organic phase syntheses of magnetic nanoparticles and their applications. Chem Rev 116:10473–10512

    Article  CAS  Google Scholar 

  26. Munao G, Costa D, Prestipino S, Caccamo C (2017) Aggregation of colloidal spheres mediated by Janus dimers: a Monte Carlo study. Coll Surf A 532:397–404

    Article  CAS  Google Scholar 

  27. Chu Z, Zhong B, Zhou W, Cui P, Gu J, Tian B, Olasoju OS, Zhang X, Sun W (2020) Study in the experimental manipulation of Janus particle synthesis via emulsion-based method. Colloids Surf A 603:125183

    Article  CAS  Google Scholar 

  28. Tang C, Zhang C, Liu J, Qu X, Li J, Yang Z (2010) Large scale synthesis of Janus submicrometer sized colloids by seeded emulsion polymerization. Macromolecules 43:5114–5120

    Article  CAS  Google Scholar 

  29. Xie S, Chen S, Zhu Q, Li X, Wang D, Shen S, Jin M, Zhou G, Zhu Y, Shui L (2020) Janus nanoparticles with tunable amphiphilicity for stabilizing pickering-emulsion droplets via assembly behavior at oil–water interfaces. ACS Appl Mater Interfaces 12:26374–26383

    Article  CAS  Google Scholar 

  30. Kim JW, Larsen RJ, Weitz DA (2006) Synthesis of nonspherical colloidal particles with anisotropic properties. J Am Chem Soc 128:14374–14377

    Article  CAS  Google Scholar 

  31. Lone S, Kim SH, Nam SW, Park S, Joo J, Cheong IW (2011) Microfluidic synthesis of Janus particles by UV-directed phase separation. Chem Commun 47:2634–2636

    Article  CAS  Google Scholar 

  32. Zhang S, Tang R, Wang D, Ma S, Jia S, Gao Z, Gong B, Ou J (2021) Fabrication of highly crosslinked and monodispersed silicon-containing polymeric microspheres via photo-initiated polymerization and their application in capillary liquid chromatography. J Chromatogr A 1659:462643

    Article  CAS  Google Scholar 

  33. Guo S, Huang C, Zhang N, Ma S, Bo C, Gong B, Ou J (2022) Enantioseparation in high performance liquid chromatography: preparation and evaluation of a vancomycin-based chiral stationary phase via surface-initiated atom transfer radical polymerization. Anal Methods 14:1221–1231

    Article  CAS  Google Scholar 

  34. Chang F, Ouhajji S, Townsend A, Sanogo Lacina K, van Ravensteijn BGP, Kegel WK (2021) Controllable synthesis of patchy particles with tunable geometry and orthogonal chemistry. J Coll Interface Sci 582:333–341

    Article  CAS  Google Scholar 

  35. Meng X, Qiu D (2020) Fabrication of monodisperse asymmetric polystyrene particles by crosslinking regulation in seeded emulsion polymerization. Polymer 203:122799

    Article  CAS  Google Scholar 

  36. Tian L, Li X, Zhao P, Chen X, Ali Z, Ali N, Zhang B, Zhang H, Zhang Q (2015) Generalized approach for fabricating monodisperse anisotropic microparticles via single-hole swelling PGMA seed particles. Macromolecules 48:7592–7603

    Article  CAS  Google Scholar 

  37. Russo G, Lattuada M (2022) Synthesis of non-spherical polymer particles using the activated swelling method. J Coll Interface Sci 611:377–389

    Article  CAS  Google Scholar 

  38. Peng Q, Cong H, Yu B, Wei L, Mahmood K, Yuan H, Yang R, Zhang X, Wu Y (2018) Preparation of polymeric Janus microparticles with hierarchically porous structure and enhanced anisotropy. J Coll Interface Sci 522:144–150

    Article  CAS  Google Scholar 

  39. Tian L, Li X, Zhao P, Ali Z, Zhang Q (2016) Fabrication of liquid protrusions on non-cross-linked colloidal particles for shape-controlled patchy microparticles. Macromolecules 49:9626–9636

    Article  CAS  Google Scholar 

  40. Huang H, Liu H (2010) Synthesis of the raspberry-like PS/PAN particles with anisotropic properties via seeded emulsion polymerization initiated by gamma-ray radiation. J Polym Sci Pol Chem 48:5198–5205

    Article  CAS  Google Scholar 

  41. Zhang J, Liu L, Yang W (2010) Preparation of amino-functionalized polystyrene nanoparticles by photoinitiated emulsion polymerization. Acta Polym Sin 12:1451–1457

    Article  Google Scholar 

  42. Zhang Y, Liu H, Wang F (2013) Facile fabrication of snowman-like Janus particles with asymmetric fluorescent properties via seeded emulsion polymerization. Coll Polym Sci 291:2993–3003

    Article  CAS  Google Scholar 

  43. Yeow J, Boyer C (2017) Photoinitiated polymerization-induced self-assembly (photo-PISA): new insights and opportunities. Adv Sci 4:1700137

    Article  Google Scholar 

  44. Tan J, Sun H, Yu M, Sumerlin BS, Zhang L (2015) Photo-PISA: shedding light on polymerization-induced self-assembly. ACS Macro Lett 4:1249–1253

    Article  CAS  Google Scholar 

  45. Ribelli TG, Lorandi F, Fantin M, Matyjaszewski K (2019) Atom transfer radical polymerization: billion times more active catalysts and new initiation systems. Macromol Rapid Commun 40:e1800616

    Article  Google Scholar 

  46. Huang C, Tang C, Tang R, Gao Z, Ma S, Gong B, Ou J (2023) A combination of surface-initiated atom transfer radical polymerization and photo-initiated “thiol-ene” click chemistry: fabrication of functionalized macroporous adsorption resins for enrichment of glycopeptides. J Chromatogr A 1689:463774

    Article  CAS  Google Scholar 

  47. Li Y, Wang C, Ma S, Zhang H, Ou J, Wei Y, Ye M (2019) Fabrication of hydrazone-linked covalent organic frameworks using alkyl amine as building block for high adsorption capacity of metal ions. ACS Appl Mater Interfaces 11:11706–11714

    Article  CAS  Google Scholar 

  48. Zhang L, Li Y, Wang Y, Ma S, Ou J, Shen Y, Ye M, Uyama H (2021) Integration of covalent organic frameworks into hydrophilic membrane with hierarchical porous structure for fast adsorption of metal ions. J Hazard Mater 407:124390

    Article  CAS  Google Scholar 

  49. Godiya CB, Liang M, Sayed SM, Li D, Lu X (2019) Novel alginate/polyethyleneimine hydrogel adsorbent for cascaded removal and utilization of Cu2+ and Pb2+ ions. J Environ Manage 232:829–841

    Article  CAS  Google Scholar 

  50. Chaabane L, Beyou E, El Ghali A, Baouab MHV (2020) Comparative studies on the adsorption of metal ions from aqueous solutions using various functionalized graphene oxide sheets as supported adsorbents. J Hazard Mater 389:121839

    Article  CAS  Google Scholar 

  51. Kong C, Zhao X, Li Y, Yang S, Chen Y, Yang Z (2019) Ion-induced synthesis of alginate fibroid hydrogel for heavy metal ions removal. Front Chem 7:905

    Article  CAS  Google Scholar 

  52. Xu C, Shi S, Wang X, Zhou H, Wang L, Zhu L, Zhang G, Xu D (2020) Electrospun SiO2-MgO hybrid fibers for heavy metal removal: characterization and adsorption study of Pb(II) and Cu(II). J Hazard Mater 381:120974

    Article  CAS  Google Scholar 

  53. Bayazit SS, Inci I (2014) Adsorption of Cu (II) ions from water by carbon nanotubes oxidized with UV-light and ultrasonication. J Mol Liq 199:559–564

    Article  CAS  Google Scholar 

  54. Zhao J, Zhu Y, Wu J, Zheng J, Zhao X, Lu B, Chen F (2014) Chitosan-coated mesoporous microspheres of calcium silicate hydrate: environmentally friendly synthesis and application as a highly efficient adsorbent for heavy metal ions. J Coll Interface Sci 418:208–215

    Article  CAS  Google Scholar 

  55. Wang H, Yan K, Xing H, Chen J, Lu R (2021) Effective removal of Cu2+ from aqueous solution by synthetic abalone shell hydroxyapatite microspheres adsorbent. Environ Technol Innovat 23:101663

    Article  CAS  Google Scholar 

  56. Chen Y, Zhao W, Wang H, Li Y, Li C (2018) Preparation of novel polyamine-type chelating resin with hyperbranched structures and its adsorption performance. Roy Soc Open Sci 5:171665

    Article  Google Scholar 

  57. Zheng Y, Deng S, Niu L, Xu F, Chai M, Yu G (2011) Functionalized cotton via surface-initiated atom transfer radical polymerization for enhanced sorption of Cu(II) and Pb(II). J Hazard Mater 192:1401–1408

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support is gratefully acknowledged from the CAS-Weigao Research & Development Program ([2017]-009), the Innovation Program of Science and Research from the Dalian Institute of Chemical Physics (DICPI202005) and the National Natural Science Foundation of Ningxia (No. 2021AAC02017) to J. Ou, as well as the National Natural Science Foundation of China (No. 22164001) and the Key materials and technology innovation team for industrial biological processes (KJT2019004) to B. Gong.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bolin Gong or Junjie Ou.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: N. Ravishankar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3027 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Z., Huang, C., Tang, R. et al. Fast fabrication of Janus particles via photo-initiated seeded swelling polymerization and their application in removal of copper(II) ion. J Mater Sci 58, 5552–5568 (2023). https://doi.org/10.1007/s10853-023-08352-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08352-3

Navigation