Skip to main content
Log in

Facile fabrication of snowman-like Janus particles with asymmetric fluorescent properties via seeded emulsion polymerization

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

This paper presents a facile method for the preparation of snowman-like Janus particles (SJP) with asymmetric fluorescent property via seeded emulsion polymerization, in which in situ formed raspberry-like cadmium sulfide/poly(styrene–divinylbenzene–acrylic acid) nanocomposite particles (RNP) were used as the seeds. The as-prepared RNP and SJP have been thoroughly characterized by transmission electron microscopy, field-emission scanning electron microscopy, thermogravimetric analysis, X-ray powder diffraction, Fourier transform infrared, ultraviolet visible, and photoluminescent spectrometry. It is found that the size ratio of the polymer bulge/inorganic seed part could be continuously tuned as well as the composition of polymer bulges by changing the composition of monomer mixtures and monomer/seed weight ratio. The obtained Janus particles possess amphiphilic properties which can be further used as solid surfactants to stabilize W/O emulsions and successively to construct hierarchical structured materials. Meanwhile, their asymmetric fluorescent properties may be exploited to detect their assembled situation and orientation at the oil–water interface of emulsions as well as at the surface of hierarchical structured materials.

Snowman-like Janus particles with asymmetric fluorescent property are successfully synthesized via seeded emulsion polymerization using in situ formed raspberry-like cadmium sulfide/poly(styrene–divinylbenzene–acrylic acid) nanocomposite particles as the seeds

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Hu J, Zhou SX, Sun YY, Fang XS, Wu LM (2012) Chem Soc Rev 41:4356–4378

    Article  CAS  Google Scholar 

  2. Lattuada M, Hatton TA (2011) Nano Today 6:286–308

    Article  CAS  Google Scholar 

  3. Rodriguez-Fernandez D, Liz-Marzan LM (2013) Part Part Syst Char 30:46–60

    Article  CAS  Google Scholar 

  4. Yu Y, Ai B, Mohwald H, Zhou ZW, Zhang G, Yang B (2012) Chem Mater 24:4549–4555

    Article  CAS  Google Scholar 

  5. Forster JD, Park JG, Mittal M, Noh H, Schreck CF, O’Hern CS, Cao H, Furst EM, Dufresne ER (2011) ACS Nano 5:6695–6700

    Article  CAS  Google Scholar 

  6. Lombardi A, Grzelczak MP, Crut A, Maioli P, Pastoriza-Santos I, Liz-Marzan L, Del M, Fatti N, Vallee F (2012) ACS Nano 7:2522–2531

    Article  Google Scholar 

  7. Glotzer SC, Solomon MJ (2007) Nat Mater 6:557–562

    Article  Google Scholar 

  8. Sanchez-Iglesias A, Grzelczak M, Altantzis T, Goris B, Perez-Juste J, Bals S, Van Tendeloo G, Donaldson SH, Chmelka BF, Israelachvili JN, Liz-Marzan LM (2012) ACS Nano 6:11059–11065

    CAS  Google Scholar 

  9. Haghgooie R, Toner M, Doyle PS (2010) Macromol Rapid Comm 31:128–134

    CAS  Google Scholar 

  10. Shum HC, Abate AR, Lee D, Studart AR, Wang B, Chen C-H, Thiele J, Shah RK, Krummel A, Weitz DA (2010) Macromol Rapid Comm 31:108–118

    CAS  Google Scholar 

  11. Kim JW, Lee D, Shum HC, Weitz DA (2008) Adv Mater 20:3239–3243

    Article  CAS  Google Scholar 

  12. Tang C, Zhang CL, Liu JG, Qu XZ, Li JL, Yang ZZ (2010) Macromolecules 43:5114–5120

    Article  CAS  Google Scholar 

  13. Walther A, Hoffmann M, Muller AHE (2008) Angew Chemi Int Edit 47:711–714

    Article  CAS  Google Scholar 

  14. Koo HY, Yi DK, Yoo SJ, Kim DY (2004) Adv Mater 16:274–277

    Article  CAS  Google Scholar 

  15. Yu H, Chen M, Rice PM, Wang SX, White RL, Sun SH (2005) Nano Lett 5:379–382

    Article  CAS  Google Scholar 

  16. Liu B, Wei W, Qu XZ, Yang ZH (2008) Angew Chem Int Edit 47:3973–3975

    Article  CAS  Google Scholar 

  17. Liu B, Zhang CL, Liu JG, Qu XZ, Yang ZZ (2009) Chem Comm 26:3871–3873

    Article  Google Scholar 

  18. Xu S, Nie Z, Seo M, Lewis P, Kumacheva E, Stone HA, Garstecki P, Weibel DB, Gitlin I, Whitesides GM (2005) Angewe Chem Int Edit 44:3799–3799

    Article  CAS  Google Scholar 

  19. Dendukuri D, Pregibon DC, Collins J, Hatton TA, Doyle PS (2006) Nat Mater 5:365–369

    Article  CAS  Google Scholar 

  20. Pan MW, Yang LY, Guan B, Lu MS, Zhong GJ, Zhu L (2011) Soft Matter 7:11187–11193

    Article  CAS  Google Scholar 

  21. Mock EB, Zukoski CF (2010) Langmuir 26:13747–13750

    Article  CAS  Google Scholar 

  22. Li L, Hu F, Xu DY, Shen SL, Wang QB (2012) Chem Comm 48:4728–4730

    Article  CAS  Google Scholar 

  23. Sheu HR, Elaasser MS, Vanderhoff JW (1990) J Polym Sci Part A Polym Chem 28:653–667

    Article  CAS  Google Scholar 

  24. Mock EB, De Bruyn H, Hawkett BS, Gilbert RG, Zukoski CF (2006) Langmuir 22:4037–4043

    Article  CAS  Google Scholar 

  25. Kraft DJ, Hilhorst J, Heinen MAP, Hoogenraad MJ, Luigjes B, Kegel WK (2011) J Phys Chem B 115:7175–7181

    Article  CAS  Google Scholar 

  26. Okubo M, Fujibayashi T, Yamada M, Minami H (2005) Colloid Polym Sci 283:1041–1045

    Article  CAS  Google Scholar 

  27. Okubo M, Wang Z, Ise E, Minami H (2001) Colloid Polym Sci 279:976–982

    Article  CAS  Google Scholar 

  28. Okubo M, Wang Z, Yamashita T, Ise E, Minami H (2001) J Polym Sci Part A Polym Chem 39:3106–3111

    Article  CAS  Google Scholar 

  29. Tang C, Zhang CL, Sun YJ, Liang FX, Wang Q, Li JL, Qu XZ, Yang ZZ (2013) Macromolecules 46:188–193

    Article  CAS  Google Scholar 

  30. Zhang CL, Liu B, Tang C, Liu JG, Qu XZ, Li JL, Yang ZZ (2009) Chem Comm 46:4610–4612

    Article  Google Scholar 

  31. Ge JP, Hu YX, Yin YD (2007) Abstr Am Chem Soc 234

  32. Sun GQ, Li ZF, Ngai T (2010) Angewe Chem Int Edi 49:2163–2166

    Article  CAS  Google Scholar 

  33. Binks BP, Fletcher PDI (2001) Langmuir 17:4708–4710

    Article  CAS  Google Scholar 

  34. Kim JW, Larsen RJ, Weitz DA (2006) J Am Chem Soc 128:14374–14377

    Article  CAS  Google Scholar 

  35. Liu B, Liu JG, Liang FX, Wang Q, Zhang CL, Qu XZ, Li JL, Qiu D, Yang ZZ (2012) Macromolecules 45:5176–5184

    Article  CAS  Google Scholar 

  36. Colver PJ, Colard CAL, Bon SAF (2008) J Am Chem Soc 130:16850–16851

    Article  CAS  Google Scholar 

  37. Joo J, Na HB, Yu T, Yu JH, Kim YW, Wu FX, Zhang JZ (2003) J Am Chem Soc 125:11100–11105

    Google Scholar 

  38. Yoon H, Lee J, Park DW, Hong CK, Shim SE (2010) Colloid Polym Sci 288:613–619

    Article  CAS  Google Scholar 

  39. Du H, Xu GQ, Chin WS, Huang L, Ji W (2002) Chem Mater 14:4473–4479

    Article  CAS  Google Scholar 

  40. Zhang JG, Coombs N, Kumacheva E, Lin YK, Sargent EH (2002) Adv Mater 14:1756–1759

    Article  CAS  Google Scholar 

  41. Leventis HC, King SP, Sudlow A, Hill MS, Molloy KC, Haque SA (2010) Nano Lett 10:1253–1258

    Article  CAS  Google Scholar 

  42. Huang HF, Liu HR (2010) J Polym Sci Part A Polym Chem 48:5198–5205

    Article  CAS  Google Scholar 

  43. Qian Z, Zhang ZC, Song LY, Liu HR (2009) J Mater Chem 19:1297–1304

    Article  CAS  Google Scholar 

  44. Wang FW, Liu HR, Zhang JD, Zhou XT, Zhang XY (2012) J Polym Sci Part A Polym Chem 50:4599–4611

    Article  CAS  Google Scholar 

  45. Du J, Liu H (2006) J Magn Magn Mater 302:263–266

    Article  CAS  Google Scholar 

  46. Weller H (1993) Angew Chem Int Edi 32:41–53

    Article  Google Scholar 

  47. Spanhel L, Haase M, Weller H, Henglein A (1987) J Am Chem Soc 109:5649–5655

    Article  CAS  Google Scholar 

  48. Rossetti R, Ellison JL, Gibson JM, Brus LE (1984) J Chem Phys 80:4464–4469

    Article  CAS  Google Scholar 

  49. Qin AM, Fang YP, Zhao WX, Liu HQ, Su CY (2005) J Cryst Growth 283:230–241

    Article  CAS  Google Scholar 

  50. Gurin VS, Artemyev MV (1994) J Cryst Growth 1994(138):993–997

    Article  Google Scholar 

  51. Nagao D, Hashimoto M, Hayasaka K, Konno M (2008) Macromol Rapid Comm 29:1484–1488

    Article  CAS  Google Scholar 

  52. Park JG, Forster JD, Dufresne ER (2012) J Am Chem Soc 132:5960–5961

    Article  Google Scholar 

  53. Kobayashi H, Miyanaga E, Okubo M (2007) Langmuir 23:8703–8708

    Article  CAS  Google Scholar 

  54. Okubo M, Minami H (1996) Colloid Polym Sci 274:433–438

    Article  CAS  Google Scholar 

  55. Deng W, Ji WJ, Jiang YM, Kan CY (2013) J Appl Polym Sci 127:651–658

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Project No. 21074122 and 50873096) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-Rong Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Liu, HR. & Wang, FW. Facile fabrication of snowman-like Janus particles with asymmetric fluorescent properties via seeded emulsion polymerization. Colloid Polym Sci 291, 2993–3003 (2013). https://doi.org/10.1007/s00396-013-3051-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-013-3051-5

Keywords

Navigation