Skip to main content

Advertisement

Log in

Study on the electromagnetic wave absorption performance of Ti3C2 MXene with different etching states

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, a safe, low-cost and simple operating LiF + HCl etching method combined with freeze-drying was used to prepare Ti3C2TX MXene with different etching states. The results indicated that the morphology of Ti3C2TX gradually changed from stacked to accordion structure and finally to ultra-thin dispersed sheets with increasing etching. We also investigated different surface functionalization and electromagnetic properties of synthesized samples. In 2–18 GHz, the effective absorption bandwidth (EAB) (RL < − 10 dB) of the sample with accordion microstructure reaches 3.92 GHz at thickness of 1.27 mm, while for the ultra-thin dispersed Ti3C2TX sheets, the EAB is increased to 4.40 GHz at thickness of 1.26 mm. To our knowledge, this is the minimum thickness in Ti3C2-related reports. We attribute the improved wave absorption performance to the dielectric and magnetic loss induced by termination layer as well as the unique interface effects, which are also beneficial to optimize the impedance matching and achieve multi-mode attenuation even in high frequency band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Huang L, Chen C, Huang X, Ruan S, Zeng Y-J (2019) Enhanced electromagnetic absorbing performance of MOF-derived Ni/NiO/Cu@C composites. Compos Part B Eng 164:583–589

    Article  CAS  Google Scholar 

  2. Rinaldi A, Proietti A, Tamburrano A, Sarto MS (2018) Graphene-coated honeycomb for broadband lightweight absorbers. IEEE Trans Electromagn Compat 60:1454–1462

    Article  Google Scholar 

  3. Xi J, Zhou E, Liu Y, Gao W, Ying J, Chen Z, Gao C (2017) Wood-based straightway channel structure for high performance microwave absorption. Carbon 124:492–498

    Article  CAS  Google Scholar 

  4. Qiang R, Du Y, Zhao H, Wang Y, Tian C, Li Z, Han X, Xu P (2015) Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption. J Mater Chem A 3:13426–13434

    Article  CAS  Google Scholar 

  5. Chen Y-T, Chang ZG (2012) Low-frequency alternative-current magnetic susceptibility of amorphous and nanocrystalline Co60Fe20B20 films. J Magn Magn Mater 324:2224–2246

    Article  CAS  Google Scholar 

  6. Cui G, Zheng X, Lv X, Jia Q, Xie W, Gu G (2019) Synthesis and microwave absorption of Ti3C2Tx MXene with diverse reactant concentration, reaction time, and reaction temperature. Ceram Int 45:23600–23610

    Article  CAS  Google Scholar 

  7. Zhang K-L, Zhang J-Y, Hou Z-L, Bi S, Zhao Q-L (2019) Multifunctional broadband microwave absorption of flexible graphene composites. Carbon 141:608–617

    Article  CAS  Google Scholar 

  8. Tagliaferri S, Panagiotopoulos A, Mattevi C (2021) Direct ink writing of energy materials. Mater Adv 2:540–563

    Article  CAS  Google Scholar 

  9. Anasori B, Lukatskaya MR, Gogotsi Y (2017) 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater 2:16098

    Article  CAS  Google Scholar 

  10. Ghidiu M, Lukatskaya MR, Zhao M-Q, Gogotsi Y, Barsoum MW (2014) Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516:78–81

    Article  CAS  Google Scholar 

  11. Lukatskaya Maria R, Mashtalir O, Ren Chang E, Dall’Agnese Y, Rozier P, Taberna Pierre L, Naguib M, Simon P, Barsoum Michel W, Gogotsi Y (2013) Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341:1502–1505

    Article  CAS  Google Scholar 

  12. Pang J, Mendes RG, Bachmatiuk A, Zhao L, Ta HQ, Gemming T, Liu H, Liu Z, Rummeli MH (2019) Applications of 2D MXenes in energy conversion and storage systems. Chem Soc Rev 48:72–133

    Article  CAS  Google Scholar 

  13. Pang J, Chang B, Liu H, Zhou W (2022) Potential of MXene-based heterostructures for energy conversion and storage. ACS Energy Lett 7:78–96

    Article  CAS  Google Scholar 

  14. Shahzad F, Alhabeb M, Hatter Christine B, Anasori B, Man Hong S, Koo Chong M, Gogotsi Y (2016) Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353:1137–1140

    Article  CAS  Google Scholar 

  15. Hu D, Wang S, Zhang C, Yi P, Jiang P, Huang X (2021) Ultrathin MXene-aramid nanofiber electromagnetic interference shielding films with tactile sensing ability withstanding harsh temperatures. Nano Res 14:2837–2845

    Article  CAS  Google Scholar 

  16. Shukla V (2020) The tunable electric and magnetic properties of 2D MXenes and their potential applications. Mater Adv 1:3104–3121

    Article  CAS  Google Scholar 

  17. Elumalai S, Lombardi JR, Yoshimura M (2020) The surface-enhanced resonance Raman scattering of dye molecules adsorbed on two-dimensional titanium carbide Ti3C2Tx (MXene) film. Mater Adv 1:146–152

    Article  CAS  Google Scholar 

  18. Peng Q, Guo J, Zhang Q, Xiang J, Liu B, Zhou A, Liu R, Tian Y (2014) Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide. J Am Chem Soc 136:4113–4116

    Article  CAS  Google Scholar 

  19. Wang L, Yuan L, Chen K, Zhang Y, Deng Q, Du S, Huang Q, Zheng L, Zhang J, Chai Z, Barsoum MW, Wang X, Shi W (2016) Loading actinides in multilayered structures for nuclear waste treatment: the first case study of uranium capture with vanadium carbide MXene. ACS Appl Mater Interfaces 8:16396–16403

    Article  CAS  Google Scholar 

  20. Xue Q, Zhang H, Zhu M, Pei Z, Li H, Wang Z, Huang Y, Huang Y, Deng Q, Zhou J, Du S, Huang Q, Zhi C (2017) Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging. Adv Mater 29:1604847

    Article  Google Scholar 

  21. Chen J, Chen K, Tong D, Huang Y, Zhang J, Xue J, Huang Q, Chen T (2015) CO2 and temperature dual responsive “Smart” MXene phases. Chem Commun 51:314–317

    Article  Google Scholar 

  22. Wang F, Yang C, Duan M, Tang Y, Zhu J (2015) TiO2 nanoparticle modified organ-like Ti3C2 MXene nanocomposite encapsulating hemoglobin for a mediator-free biosensor with excellent performances. Biosens Bioelectron 74:1022–1028

    Article  CAS  Google Scholar 

  23. Rasool K, Mahmoud KA, Johnson DJ, Helal M, Berdiyorov GR, Gogotsi Y (2017) Efficient antibacterial membrane based on two-dimensional Ti3C2Tx (MXene) nanosheets. Sci Rep 7:1598

    Article  Google Scholar 

  24. Chen K, Chen Y, Deng Q, Jeong S-H, Jang T-S, Du S, Kim H-E, Huang Q, Han C-M (2018) Strong and biocompatible poly(lactic acid) membrane enhanced by Ti3C2Tz (MXene) nanosheets for Guided bone regeneration. Mater Lett 229:114–117

    Article  CAS  Google Scholar 

  25. Huang K, Li Z, Lin J, Han G, Huang P (2018) Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem Soc Rev 47:5109–5124

    Article  CAS  Google Scholar 

  26. Lin H, Wang X, Yu L, Chen Y, Shi J (2017) Two-dimensional ultrathin mxene ceramic nanosheets for photothermal conversion. Nano Lett 17:384–391

    Article  CAS  Google Scholar 

  27. Liang K, Tabassum A, Majed A, Dun C, Yang F, Guo J, Prenger K, Urban JJ, Naguib M (2021) Synthesis of new two-dimensional titanium carbonitride Ti2C0.5N0.5Tx MXene and its performance as an electrode material for sodium-ion battery. InfoMat 3:1422–1430

    Article  CAS  Google Scholar 

  28. Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y (2014) 25th Anniversary Article: MXenes: a new family of two-dimensional materials. Adv Mater 26:992–1005

    Article  CAS  Google Scholar 

  29. Tan J, Wang Y, Wang Z, He X, Liu Y, Wang B, Katsnelson MI, Yuan S (2019) Large out-of-plane piezoelectricity of oxygen functionalized MXenes for ultrathin piezoelectric cantilevers and diaphragms. Nano Energy 65:104058

    Article  CAS  Google Scholar 

  30. Li X, Yin X, Song C, Han M, Xu H, Duan W, Cheng L, Zhang L (2018) Self-assembly core-shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance. Adv Funct Mater 28:1803938

    Article  Google Scholar 

  31. Xu H, Yin X, Li X, Li M, Liang S, Zhang L, Cheng L (2019) Lightweight Ti2CTx MXene/poly(vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature. ACS Appl Mater Interfaces 11:10198–10207

    Article  CAS  Google Scholar 

  32. Li M, Lu J, Luo K, Li Y, Chang K, Chen K, Zhou J, Rosen J, Hultman L, Eklund P, Persson POÅ, Du S, Chai Z, Huang Z, Huang Q (2019) Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J Am Chem Soc 141:4730–4737

    Article  CAS  Google Scholar 

  33. Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum MW (2011) Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 23:4248–5423

    Article  CAS  Google Scholar 

  34. Qing Y, Zhou W, Luo F, Zhu D (2016) Titanium carbide (MXene) nanosheets as promising microwave absorbers. Ceram Int 42:16412–16416

    Article  CAS  Google Scholar 

  35. Fang B, Li N, Dai B, Shang S, Guan L, Zhao B, Wang X, Bai Z, Zhang R (2020) Investigation of adjacent spacing dependent microwave absorption properties of lamellar structural Ti3C2Tx MXenes. Adv Powder Technol 31:808–815

    Article  Google Scholar 

  36. Zhang Z, Cai Z, Zhang Y, Peng Y, Wang Z, Xia L, Ma S, Yin Z, Wang R, Cao Y, Li Z, Huang Y (2021) The recent progress of MXene-Based microwave absorption materials. Carbon 174:484–499

    Article  CAS  Google Scholar 

  37. Xin W, Xi G-Q, Cao W-T, Ma C, Liu T, Ma M-G, Bian J (2019) Lightweight and flexible MXene/CNF/silver composite membranes with a brick-like structure and high-performance electromagnetic-interference shielding. RSC Adv 9:29636–29644

    Article  CAS  Google Scholar 

  38. Xie F, Jia F, Zhuo L, Lu Z, Si L, Huang J, Zhang M, Ma Q (2019) Ultrathin MXene/aramid nanofiber composite paper with excellent mechanical properties for efficient electromagnetic interference shielding. Nanoscale 11:23382–23391

    Article  CAS  Google Scholar 

  39. Sambyal P, Iqbal A, Hong J, Kim H, Kim M-K, Hong SM, Han M, Gogotsi Y, Koo CM (2019) Ultralight and mechanically robust Ti3C2Tx hybrid aerogel reinforced by carbon nanotubes for electromagnetic interference shielding. ACS Appl Mater Interfaces 11:38046–38054

    Article  CAS  Google Scholar 

  40. Hope MA, Forse AC, Griffith KJ, Lukatskaya MR, Ghidiu M, Gogotsi Y, Grey CP (2016) NMR reveals the surface functionalisation of Ti3C2 MXene. Phys Chem Chem Phys 18:5099–5102

    Article  CAS  Google Scholar 

  41. Han M, Yin X, Wu H, Hou Z, Song C, Li X, Zhang L, Cheng L (2016) Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band. ACS Appl Mater Interfaces 8:21011–21019

    Article  CAS  Google Scholar 

  42. Han M, Yin X, Li X, Anasori B, Zhang L, Cheng L, Gogotsi Y (2017) Laminated and two-dimensional carbon-supported microwave absorbers derived from MXenes. ACS Appl Mater Interfaces 9:20038–20045

    Article  CAS  Google Scholar 

  43. Li X, Yin X, Han M, Song C, Sun X, Xu H, Cheng L, Zhang L (2017) A controllable heterogeneous structure and electromagnetic wave absorption properties of Ti2CTx MXene. J Mater Chem C 5:7621–7628

    Article  CAS  Google Scholar 

  44. Yin X, Kong L, Zhang L, Cheng L, Travitzky N, Greil P (2014) Electromagnetic properties of Si–C–N based ceramics and composites. Int Mater Rev 59:326–355

    Article  CAS  Google Scholar 

  45. Tong Y, He M, Zhou Y, Zhong X, Fan L, Huang T, Liao Q, Wang Y (2018) Electromagnetic wave absorption properties in the centimetre-band of Ti3C2Tx MXenes with diverse etching time. J Mater Sci Mater Electron 29:8078–8088

    Article  CAS  Google Scholar 

  46. Feng W, Luo H, Zeng S, Chen C, Deng L, Tan Y, Zhou X, Peng S, Zhang H (2018) Ni-modified Ti3C2 MXene with enhanced microwave absorbing ability. Mater Chem Front 2:2320–2326

    Article  CAS  Google Scholar 

  47. He P, Cao M-S, Shu J-C, Cai Y-Z, Wang X-X, Zhao Q-L, Yuan J (2019) Atomic layer tailoring titanium carbide MXene To tune transport and polarization for utilization of electromagnetic energy beyond solar and chemical energy. ACS Appl Mater Interfaces 11:12535–12543

    Article  CAS  Google Scholar 

  48. Luo J, Tao X, Zhang J, Xia Y, Huang H, Zhang L, Gan Y, Liang C, Zhang W (2016) Sn4+ ion decorated highly conductive Ti3C2 MXene: promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano 10:2491–2499

    Article  CAS  Google Scholar 

  49. Zhu J, Tang Y, Yang C, Wang F, Cao M (2016) Composites of TiO2 nanoparticles deposited on Ti3C2 MXene nanosheets with enhanced electrochemical performance. J Electrochem Soc 163:A785–A791

    Article  CAS  Google Scholar 

  50. Zhang Y, Ruan K, Shi X, Qiu H, Pan Y, Yan Y, Gu J (2021) Ti3C2Tx/rGO porous composite films with superior electromagnetic interference shielding performances. Carbon 175:271–280

    Article  CAS  Google Scholar 

  51. Cui G, Wang L, Li L, Xie W, Gu G (2020) Synthesis of CuS nanoparticles decorated Ti3C2Tx MXene with enhanced microwave absorption performance. Prog Nat Sci Mater Int 30:343–351

    Article  CAS  Google Scholar 

  52. Hou T, Jia Z, Wang B, Li H, Liu X, Bi L, Wu G (2021) MXene-based accordion 2D hybrid structure with Co9S8/C/Ti3C2Tx as efficient electromagnetic wave absorber. Chem Eng J 414:128875

    Article  CAS  Google Scholar 

  53. Feng W, Luo H, Wang Y, Zeng S, Tan Y, Deng L, Zhou X, Zhang H, Peng S (2019) Mxenes derived laminated and magnetic composites with excellent microwave absorbing performance. Sci Rep 9:3957

    Article  Google Scholar 

  54. Lu Z, Jia F, Zhuo L, Ning D, Gao K, Xie F (2021) Micro-porous MXene/Aramid nanofibers hybrid aerogel with reversible compression and efficient EMI shielding performance. Compos B Eng 217:108853

    Article  CAS  Google Scholar 

  55. Zhao S, Zhang H-B, Luo J-Q, Wang Q-W, Xu B, Hong S, Yu Z-Z (2018) Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 12:11193–11202

    Article  CAS  Google Scholar 

  56. Wu H, Wu G, Wang L (2015) Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: facile synthesis and electromagnetic properties. Powder Technol 269:433–451

    Article  Google Scholar 

  57. Wang Y, Gao X, Zhang L, Wu X, Wang Q, Luo C, Wu G (2019) Synthesis of Ti3C2/Fe3O4/PANI hierarchical architecture composite as an efficient wide-band electromagnetic absorber. Appl Surf Sci 480:830–838

    Article  CAS  Google Scholar 

  58. Zhou X, Jia Z, Feng A, Wang X, Liu J, Zhang M, Cao H, Wu G (2019) Synthesis of fish skin-derived 3D carbon foams with broadened bandwidth and excellent electromagnetic wave absorption performance. Carbon 152:827–836

    Article  CAS  Google Scholar 

  59. Wu G, Cheng Y, Yang Z, Jia Z, Wu H, Yang L, Li H, Guo P, Lv H (2018) Design of carbon sphere/magnetic quantum dots with tunable phase compositions and boost dielectric loss behavior. Chem Eng J 333:519–528

    Article  CAS  Google Scholar 

  60. He J, Shan D, Yan S, Luo H, Cao C, Peng Y (2019) Magnetic FeCo nanoparticles-decorated Ti3C2 MXene with enhanced microwave absorption performance. J Magn Magn Mater 492:165639

    Article  CAS  Google Scholar 

  61. Jiang L, Wang Z, Li D, Geng D, Wang Y, An J, He J, Liu W, Zhang Z (2015) Excellent microwave-absorption performances by matched magnetic–dielectric properties in double-shelled Co/C/polyaniline nanocomposites. RSC Adv 5:40384–40392

    Article  CAS  Google Scholar 

  62. Huang L, Chen C, Li Z, Zhang Y, Zhang H, Lu J, Ruan S, Zeng Y (2019) Challenges and future perspectives on microwave absorption based on two-dimensional materials and structures. Nanotechnology 31:162001

    Google Scholar 

  63. Qing Y, Ma L, Hu X, Luo F, Zhou W (2018) NiFe2O4 nanoparticles filled BaTiO3 ceramics for high-performance electromagnetic interference shielding applications. Ceram Int 44:8706–8709

    Article  CAS  Google Scholar 

  64. Saini P, Arora M, Gupta G, Gupta BK, Singh VN, Choudhary V (2013) High permittivity polyaniline–barium titanate nanocomposites with excellent electromagnetic interference shielding response. Nanoscale 5:4330–4336

    Article  CAS  Google Scholar 

  65. Cui L, Tian C, Tang L, Han X, Wang Y, Liu D, Xu P, Li C, Du Y (2019) Space-confined synthesis of core-shell BaTiO3@carbon microspheres as a high-performance binary dielectric system for microwave absorption. ACS Appl Mater Interfaces 11:31182–31190

    Article  CAS  Google Scholar 

  66. Qiao L, Wen F, Wei J, Wang J, Li F (2008) Microwave permeability spectra of flake-shaped FeCuNbSiB particle composites. J Appl Phys 103:063903

    Article  Google Scholar 

  67. Yadav RS, Kuřitka I, Vilcakova J, Skoda D, Urbánek P, Machovsky M, Masař M, Kalina L, Havlica J (2019) Lightweight NiFe2O4-Reduced Graphene Oxide-Elastomer Nanocomposite flexible sheet for electromagnetic interference shielding application. Compos Part B Eng 166:95–111

    Article  CAS  Google Scholar 

  68. Liu P, Yao Z, Ng VMH, Zhou J, Kong LB, Yue K (2018) Facile synthesis of ultrasmall Fe3O4 nanoparticles on MXenes for high microwave absorption performance. Compos Part A Appl Sci Manuf 115:371–382

    Article  CAS  Google Scholar 

  69. Ding X, Huang Y, Li S, Zhang N, Wang J (2016) FeNi3 nanoalloy decorated on 3D architecture composite of reduced graphene oxide/molybdenum disulfide giving excellent electromagnetic wave absorption properties. J Alloys Compd 689:208–217

    Article  CAS  Google Scholar 

  70. Li X, Yin X, Han M, Song C, Xu H, Hou Z, Zhang L, Cheng L (2017) Ti3C2 MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties. J Mater Chem C 5:4068–4074

    Article  CAS  Google Scholar 

  71. Qing Y, Nan H, Luo F, Zhou W (2017) Nitrogen-doped graphene and titanium carbide nanosheet synergistically reinforced epoxy composites as high-performance microwave absorbers. RSC Adv 7:27755–27761

    Article  CAS  Google Scholar 

  72. Shi X-L, Cao M-S, Yuan J, Zhao Q-L, Kang Y-Q, Fang X-Y, Chen Y-J (2008) Nonlinear resonant and high dielectric loss behavior of CdSα-Fe2O3 heterostructure nanocomposites. Appl Phys Lett 93:183118

    Article  Google Scholar 

  73. Liu T, Liu N, An Q, Xiao Z, Zhai S, Li Z (2019) Designed construction of Ti3C2Tx@PPY composites with enhanced microwave absorption performance. J Alloys Compd 802:445–457

    Article  CAS  Google Scholar 

  74. Chen X, Wang W, Shi T, Wu G, Lu Y (2020) One pot green synthesis and EM wave absorption performance of MoS2@nitrogen doped carbon hybrid decorated with ultrasmall cobalt ferrite nanoparticles. Carbon 163:202–212

    Article  CAS  Google Scholar 

  75. Wu G, Jia Z, Zhou X, Nie G, Lv H (2020) Interlayer controllable of hierarchical MWCNTs@C@FexOy cross-linked composite with wideband electromagnetic absorption performance. Compos Part A Appl Sci Manuf 128:105687

    Article  CAS  Google Scholar 

  76. Jiang S, Wang E, Akhtar MN (2020) Enhanced microwave absorption characteristic of decorated MWCNTs with La0.9Bi0.1Fe0.8Co0.2O3 multiferroic nanoparticles via coating by PEDOT/Polyaniline co-polymer. Ceram Int 46:28193–28199

    Article  CAS  Google Scholar 

  77. Jia Z, Wang B, Feng A, Liu J, Zhang M, Huang Z, Wu G (2019) Development of spindle-cone shaped of Fe/α-Fe2O3 hybrids and their superior wideband electromagnetic absorption performance. J Alloy Compd 799:216–223

    Article  CAS  Google Scholar 

  78. Gao X, Jia Z, Wang B, Wu X, Sun T, Liu X, Chi Q, Wu G (2021) Synthesis of NiCo-LDH/MXene hybrids with abundant heterojunction surfaces as a lightweight electromagnetic wave absorber. Chem Eng J 419:130019

    Article  CAS  Google Scholar 

  79. Liu Y, Yang J, Xu J, Lu L, Su X (2022) Electromagnetic and microwave absorption properties of Ti3SiC2/AgNWs/ acrylic acid resin composite coatings with FSS incorporation. J Alloys Compd 899:163327

    Article  CAS  Google Scholar 

  80. Liu Y, Qin J, Shi H, Xu J, Lu L, Su X (2022) Electromagnetic and microwave absorption properties of Ag wrapped MXene composite with frequency selective surface incorporation. Diam Relat Mater 126:108996

    Article  CAS  Google Scholar 

  81. Feng W, Luo H, Wang Y, Zeng S, Deng L, Zhou X, Zhang H, Peng S (2018) Ti3C2 MXene: a promising microwave absorbing material. RSC Adv 8:2398–2403

    Article  CAS  Google Scholar 

  82. Zhang W, Zhang X, Wu H, Yan H, Qi S (2018) Impact of morphology and dielectric property on the microwave absorbing performance of MoS2-based materials. J Alloys Compd 751:34–42

    Article  CAS  Google Scholar 

  83. Fang J, Pu F, Li Z, Li X, Hu X, Bai J (2016) Interfacial interactions and synergistic effect of CoNi nanocrystals and nitrogen-doped graphene in a composite microwave absorber. Carbon 104:214–225

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ZX: Methodology, formal analysis, validation, investigation, software, revise draft. RZ: Methodology, formal analysis, writing-original draft. QM: Data curation. XL: Writing-review and editing, supervision. XC: Formal analysis.

Corresponding author

Correspondence to Xiang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable because this article does not contain any studies with human or animal subjects.

Additional information

Handling Editor: Mark Bissett.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Zhou, R., Ma, Q. et al. Study on the electromagnetic wave absorption performance of Ti3C2 MXene with different etching states. J Mater Sci 58, 4824–4839 (2023). https://doi.org/10.1007/s10853-023-08337-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08337-2

Navigation