Skip to main content

Advertisement

Log in

Effect of Ti3AlC2 precursor and processing conditions on microwave absorption performance of resultant Ti3C2Tx MXene

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ti3C2Tx MXene prepared by the removal of Al from the Ti3AlC2 precursor is an attractive 2D material with attractive physical and chemical properties. However, the measured properties of Ti3C2Tx, especially the microwave absorption (MA) properties, vary greatly in the literature. To illustrate the influence of the dominant factors on the MA property differences of Ti3C2Tx, different sized Ti3AlC2 precursors and processing conditions were investigated. The Ti3AlC2 precursors were synthesized by pressureless sintering a Ti/Al/graphite mixture at 1450 °C for 30 min, 60 min and 120 min, respectively. Ti3C2Tx flakes having various lateral dimensions and thicknesses were obtained after etching the Ti3AlC2 precursors in 40% HF solution for 2 h. The MA test showed the largest Ti3C2Tx flakes by etching of the 120 min-prepared Ti3AlC2 demonstrated the minimum reflection loss (RL) value of − 28.11 dB at 10.24 GHz, indicating the larger Ti3C2Tx flakes, the richer in surface terminations which dissipate more microwave energy. The etching times from 0.5 h to 20 h was adopted to enrich the surface functional groups which contribute to the enhanced MA properties. However, the prolonged etching time up to 20 h caused the poor MA performance. Furthermore, surface chemistry of Ti3C2Tx affected the MA behavior. Annealing Ti3C2Tx at 750 °C removed some surface groups, thus deteriorating the MA property. This work is conductive to the practical applications of MXenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum MW (2011) Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 23:4248–4253. https://doi.org/10.1002/adma.201102306

    Article  CAS  Google Scholar 

  2. Naguib M, Mashtalir O, Carle VJ, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum MW (2012) Two-dimensional transition metal carbides. ACS Nano 2:1322–1331. https://doi.org/10.1021/nn204153h

    Article  CAS  Google Scholar 

  3. Er D, Li J, Naguib M, Gogotsi Y, Shenoy VB (2014) Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Appl Mater Interfaces 6(14):11173–11179. https://doi.org/10.1021/am501144q

    Article  CAS  Google Scholar 

  4. Levitt AS, Alhabeb M, Hatter CB, Sarycheva A, Dion G, Gogotsi Y (2019) Electrospun MXene/carbon nanofibers as supercapacitor electrodes. J Mater Chem A 7:269–277. https://doi.org/10.1039/c8ta09810g

    Article  CAS  Google Scholar 

  5. Hu S, Li S, Xu W, Zhang J, Zhou Y, Cheng Z (2019) Rapid preparation, thermal stability and electromagnetic interference shielding properties of two-dimensional Ti3C2 MXene. Ceram Int 45:19902–19909. https://doi.org/10.1016/j.ceramint.2019.06.246

    Article  CAS  Google Scholar 

  6. Fan Z, Wang D, Yuan Y, Wang Y, Cheng Z, Liu Y, Xie Z (2020) A lightweight and conductive MXene/graphene hybrid foam for superior electromagnetic interference shielding. Chem Eng J 381:122696. https://doi.org/10.1016/j.cej.2019.122696

    Article  CAS  Google Scholar 

  7. Lu X, Zhang Q, Liao J, Chen H, Fan Y, Xing J, Gu S, Huang J, Ma J, Wang J, Wang L, Jiang W (2019) High-efficiency thermoelectric power generation enabled by homogeneous incorporation of MXene in (Bi, Sb)(2)Te-3 matrix. Adv Energy Mater. https://doi.org/10.1002/aenm.201902986

    Article  Google Scholar 

  8. Lin P, Xie J, He Y, Lu X, Li W, Fang J, Yan S, Zhang L, Sheng X, Chen Y (2020) MXene aerogel-based phase change materials toward solar energy conversion. Sol Energy Mater Sol Cells 206:110229. https://doi.org/10.1016/j.solmat.2019.110229

    Article  CAS  Google Scholar 

  9. Yu L, Fan Z, Shao Y, Tian Z, Sun J, Liu Z (2019) Versatile n-doped MXene ink for printed electrochemical energy storage application. Adv Energy Mater 9(34):1901839. https://doi.org/10.1002/aenm.201901839

    Article  CAS  Google Scholar 

  10. Fan Z, Wang Y, Xie Z, Wang D, Yuan Y, Kang H, Su B, Cheng Z, Liu Y (2018) Modified MXene/holey graphene films for advanced supercapacitor electrodes with superior energy storage. Adv Sci (Weinh) 5(10):1800750. https://doi.org/10.1002/advs.201800750

    Article  CAS  Google Scholar 

  11. Salles P, Quain E, Kurra N, Sarycheva A, Gogotsi Y (2018) Automated scalpel patterning of solution processed thin films for fabrication of transparent MXene microsupercapacitors. Small 14(44):1802864. https://doi.org/10.1002/smll.201802864

    Article  CAS  Google Scholar 

  12. Yang L, Zheng W, Zhang P, Chen J, Tian WB, Zhang YM, Sun ZM (2018) Mxene/cnts films prepared by electrophoretic deposition for supercapacitor electrodes. J Electroanal Chem 830:1–6. https://doi.org/10.1016/j.jelechem.2018.10.024

    Article  CAS  Google Scholar 

  13. Gou GY, Jin ML, Lee BJ, Tian H, Wu F, Li YT, Ju ZY, Jian JM, Geng XS, Ren J, Wei Y, Jiang GY, Qiao Y, Li X, Kim SJ, Gao M, Jung HT, Ahn CW, Yang Y, Ren TL (2019) Flexible two-dimensional Ti3C2 MXene films as thermoacoustic devices. ACS Nano 13(11):12613–12620. https://doi.org/10.1021/acsnano.9b03889

    Article  CAS  Google Scholar 

  14. Tanvir A, Sobolciak P, Popelka A, Mrlik M, Spitalsky Z, Micusik M, Prokes J, Krupa I (2019) Electrically conductive transparent polymeric nanocomposites modified by 2D Ti3C2 (MXene). Polymers. https://doi.org/10.3390/polym11081272

    Article  Google Scholar 

  15. Qian Y, Wei H, Dong J, Du Y, Fang X, Zheng W, Sun Y, Jiang Z (2017) Fabrication of urchin-like ZnO-MXene nanocomposites for high-performance electromagnetic absorption. Ceram Int 43(14):10757–10762. https://doi.org/10.1016/j.ceramint.2017.05.082

    Article  CAS  Google Scholar 

  16. Qing Y, Zhou W, Luo F, Zhu D (2016) Titanium carbide (mxene) nanosheets as promising microwave absorbers. Ceram Int 42(14):16412–16416. https://doi.org/10.1016/j.ceramint.2016.07.150

    Article  CAS  Google Scholar 

  17. Feng W, Luo H, Wang Y, Zeng S, Deng L, Zhou X, Zhang H, Peng S (2018) Ti3C2 MXene: a promising microwave absorbing material. RSC Adv 8(5):2398–2403. https://doi.org/10.1039/c7ra12616f

    Article  CAS  Google Scholar 

  18. Han M, Yin X, Wu H, Hou Z, Song C, Li X, Zhang L, Cheng L (2016) Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the x-band. ACS Appl Mater Interfaces 8(32):21011–21019. https://doi.org/10.1021/acsami.6b06455

    Article  CAS  Google Scholar 

  19. Cui G, Zheng X, Lv X, Jia Q, Xie W, Gu G (2019) Synthesis and microwave absorption of Ti3C2Tx MXene with diverse reactant concentration, reaction time, and reaction temperature. Ceram Int 45(17):23600–23610. https://doi.org/10.1016/j.ceramint.2019.08.071

    Article  CAS  Google Scholar 

  20. Cui G, Sun X, Zhang G, Zhang Z, Liu H, Gu J, Gu G (2019) Electromagnetic absorption performance of two-dimensional MXene Ti3C2Tx exfoliated by HCl + LiF etchant with diverse etching times. Mater Lett 252:8–10. https://doi.org/10.1016/j.matlet.2019.05.053

    Article  CAS  Google Scholar 

  21. Tong Y, He M, Zhou Y, Zhong X, Fan L, Huang T, Liao Q, Wang Y (2018) Electromagnetic wave absorption properties in the centimetre-band of Ti3C2TxMXenes with diverse etching time. J Mater Sci Mater Electron 29(10):8078–8088. https://doi.org/10.1007/s10854-018-8814-9

    Article  CAS  Google Scholar 

  22. Tu S, Jiang Q, Zhang J, He X, Hedhili MN, Zhang X, Alshareef HN (2019) Enhancement of dielectric permittivity of Ti3C2Tx MXene/polymer composites by controlling flake size and surface termination. ACS Appl Mater Interfaces 11(30):27358–27362. https://doi.org/10.1021/acsami.9b09137

    Article  CAS  Google Scholar 

  23. Shuck CE, Han M, Maleski K, Hantanasirisakul K, Kim SJ, Choi J, Reil WEB, Gogotsi Y (2019) Effect of Ti3AlC2 MAX phase on structure and properties of resultant Ti3C2Tx MXene. ACS Appl Nano Mater 2(6):3368–3376. https://doi.org/10.1021/acsanm.9b00286

    Article  CAS  Google Scholar 

  24. Xu J, Zhu J, Gong C, Guan Z, Yang D, Shen Z, Yao W, Wu H (2020) Achieving high yield of Ti3C2Tx MXene few-layer flakes with enhanced pseudocapacior performance by decreasing precursor size. Chin Chem Lett 31(4):1039–1043. https://doi.org/10.1016/j.cclet.2020.02.050

    Article  CAS  Google Scholar 

  25. Wen SL, Liu Y, Zhao XC (2015) Facile chemical synthesis, electromagnetic response, and enhanced microwave absorption of cobalt powders with controllable morphologies. J Chem Phys 143(8):084707. https://doi.org/10.1063/1.4929842

    Article  CAS  Google Scholar 

  26. Che RC, Peng LM, Duan XF, Chen Q, Liang XL (2004) Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv Mater 16(5):401–405. https://doi.org/10.1002/adma.200306460

    Article  CAS  Google Scholar 

  27. Liu Q, Cao Q, Bi H, Liang C, Yuan K, She W, Yang Y, Che R (2016) CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv Mater 28(3):486–490. https://doi.org/10.1002/adma.201503149

    Article  CAS  Google Scholar 

  28. Maleski K, Ren CE, Zhao MQ, Anasori B, Gogotsi Y (2018) Size-dependent physical and electrochemical properties of two-dimensional MXene flakes. ACS Appl Mater Interfaces 10(29):24491–24498. https://doi.org/10.1021/acsami.8b04662

    Article  CAS  Google Scholar 

  29. Lipatov A, Alhabeb M, Lukatskaya MR, Boson A, Gogotsi Y, Sinitskii A (2016) Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene Flakes. Adv Electron Mater. https://doi.org/10.1002/aelm.201600255

    Article  Google Scholar 

  30. Sun H, Che R, You X, Jiang Y, Yang Z, Deng J, Qiu L, Peng H (2014) Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv Mater 26(48):8120–8125. https://doi.org/10.1002/adma.201403735

    Article  CAS  Google Scholar 

  31. Zhao B, Li Y, Zeng Q, Wang L, Ding J, Zhang R, Che R (2020) Galvanic replacement reaction involving core-shell magnetic chains and orientation-tunable microwave absorption properties. Small 16(40):2003502. https://doi.org/10.1002/smll.202003502

    Article  CAS  Google Scholar 

  32. Zhao B, Guo X, Zhao W, Deng J, Fan B, Shao G, Bai Z, Zhang R (2016) Facile synthesis of yolk–shell Ni@void@SnO2(Ni3Sn2) ternary composites via galvanic replacement/Kirkendall effect and their enhanced microwave absorption properties. Nano Res 10(1):331–343. https://doi.org/10.1007/s12274-016-1295-3

    Article  CAS  Google Scholar 

  33. Zhao B, Guo X, Zhao W, Deng J, Shao G, Fan B, Bai Z, Zhang R (2016) Yolk-shell Ni@SnO2 composites with a designable interspace to improve the electromagnetic wave absorption properties. ACS Appl Mater Interfaces 8(42):28917–28925. https://doi.org/10.1021/acsami.6b10886

    Article  CAS  Google Scholar 

  34. Zhao B, Deng J, Zhao C, Wang C, Chen YG, Hamidinejad M, Li R, Park CB (2020) Achieving wideband microwave absorption properties in PVDF nanocomposite foams with an ultra-low MWCNT content by introducing a microcellular structure. J Mater Chem C 8(1):58–70. https://doi.org/10.1039/c9tc04575a

    Article  CAS  Google Scholar 

  35. Zhang K, Di M, Fu L, Deng Y, Du Y, Tang N (2020) Enhancing the magnetism of 2D carbide MXene Ti3C2Tx by H2 annealing. Carbon 157:90–96. https://doi.org/10.1016/j.carbon.2019.10.016

    Article  CAS  Google Scholar 

  36. Persson I, Näslund L-Å, Halim J, Barsoum MW, Darakchieva V, Palisaitis J, Rosen J, Persson POÅ (2017) On the organization and thermal behavior of functional groups on Ti3C2 MXene surfaces in vacuum. 2D Mater. https://doi.org/10.1088/2053-1583/aa89cd

    Article  Google Scholar 

  37. Halim J, Cook KM, Naguib M, Eklund P, Gogotsi Y, Rosen J, Barsoum MW (2016) X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl Surf Sci 362:406–417. https://doi.org/10.1016/j.apsusc.2015.11.089

    Article  CAS  Google Scholar 

  38. Ulrike D (2003) The surface science of titanium dioxide. Surf Sci Rep 48:53–229. https://doi.org/10.1016/s0167-5729(02)00100-0

    Article  Google Scholar 

  39. Xia T, Zhang C, Oyler NA, Chen X (2013) Hydrogenated TiO2 nanocrystals: A novel microwave absorbing material. Adv Mater 25(47):6905–6910. https://doi.org/10.1002/adma.201303088

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant no. 51772020, and Beijing Government Funds for the Constructive Project of Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shibo Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Joshua Tong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary information 1 (DOCX 4396 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Li, S., Hu, S. et al. Effect of Ti3AlC2 precursor and processing conditions on microwave absorption performance of resultant Ti3C2Tx MXene. J Mater Sci 56, 9287–9301 (2021). https://doi.org/10.1007/s10853-021-05878-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-05878-2

Navigation