Skip to main content

Advertisement

Log in

Potassium pre-intercalated manganese dioxide nanoflakes for high-performance aqueous zinc ion batteries

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Manganese dioxide (MnO2) is promising cathode materials for aqueous rechargeable zinc ion batteries (ARZIBs) owing to their diverse polymorphy, high operating voltage and environmental benignity. However, the sluggish electrochemical kinetics and poor cycling stability are major issues to binder their practical applications. Herein, potassium pre-intercalated manganese dioxide (KMO) nanoflakes were fabricated via simple hydrothermal method. The KMO nanoflakes are assigned to be layered birnessite phase with layer spacing of 7.2 Å and the atomic ratio between K and Mn is around 1:3. As cathode for ARZIBs, the KMO electrode delivered specific capacity of 252 mAh g−1 at current density of 0.1 A g−1 and gained specific capacity of 288 mAh g−1 after 100 cycles, being with the retention of 114%. The KMO cathode displayed outstanding cycling stability that under large current density of 2.0 A g−1 it could retain 84.3% of initial capacity after 4000 cycles. By analyzing the electrochemical dynamics and phase evolution of KMO electrode during discharge/charge process, it was validated that the potassium pre-intercalation in MnO2 framework not only provides enlarged spacing for Zn2+/H+ ion transferring but also is served as strong support to stabilize the layer structure, resulting in high energy density and better cycling stability. Our work provides rational way for designing high-performance manganese-based cathode materials for ARZIBs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Dunn B, Kamath H, Tarascon J-M (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935

    Article  CAS  Google Scholar 

  2. Yang Z, Zhang J, Kintner-Meyer MCW, Lu X, Choi D, Lemmon JP, Liu J (2011) Electrochemical energy storage for green grid. Chem Rev 111:3577–3613

    Article  CAS  Google Scholar 

  3. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon J-M (2012) Li–O2 and Li–S batteries with high energy storage. Nat Mater 11:19–29

    Article  CAS  Google Scholar 

  4. Chen L, Yang Z, Qin H, Zeng X, Meng J, Chen H (2019) Graphene-wrapped hollow ZnMn2O4 microspheres for high-performance cathode materials of aqueous zinc ion batteries. Electrochim Acta 317:155–163

    Article  CAS  Google Scholar 

  5. Cao LL, Yu BZ, Cheng T, Zheng XL, Li XH, Li WL, Ren ZY, Fan HM (2017) Optimized K+ pre-intercalation in layered manganese dioxide nanoflake arrays with high intercalation pseudocapacitance. Ceram Int 43:14897–14904

    Article  CAS  Google Scholar 

  6. Yan M, He P, Chen Y, Wang S, Wei Q, Zhao K, Xu X, An Q, Shuang Y, Shao Y, Mueller KT, Mai L, Liu J, Yang J (2018) Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv Mater 30:1703725

    Article  Google Scholar 

  7. Liu TC, Pell WG, Conway BE, Roberson SL (1998) Behavior of molybdenum nitrides as materials for electrochemical capacitors: comparison with ruthenium oxide. J Electrochem Soc 145:1882–1888

    Article  CAS  Google Scholar 

  8. Xing Z, Wang S, Yu A, Chen Z (2018) Aqueous intercalation-type electrode materials for grid-level energy storage: beyond the limits of lithium and sodium. Nano Energy 50:229–244

    Article  CAS  Google Scholar 

  9. Chen J, Zhou W, Quan Y, Liu B, Yang M, Chen M, Han X, Xu X, Zhang P, Shi S (2022) Ionic liquid additive enabling anti-freezing aqueous electrolyte and dendrite-free Zn metal electrode with organic/inorganic hybrid solid electrolyte interphase layer. Energy Storage Mater 53:629–637

    Article  Google Scholar 

  10. Chen M, Chen J, Zhou W, Han X, Yao Y, Wong C-P (2021) Realizing an all-round hydrogel electrolyte toward environmentally adaptive dendrite-free aqueous Zn–MnO2 batteries. Adv Mater 33:2007559

    Article  CAS  Google Scholar 

  11. Zhou W, Wu T, Chen M, Tian Q, Han X, Xu X, Chen J (2022) Wood-based electrodes enabling stable, anti-freezing, and flexible aqueous zinc-ion batteries. Energy Storage Mater. 51:286–293

    Article  Google Scholar 

  12. Wang JJ, Wang JG, Liu HY, Wei CG, Kang FY (2019) Zinc ion stabilized MnO2 nanospheres for high capacity and long lifespan aqueous zinc-ion batteries. J Mater Chem A 7:13727–13735

    Article  CAS  Google Scholar 

  13. Sun T, Nian Q, Zheng S, Shi J, Tao Z (2020) Layered Ca0.28MnO2·0.5H2O as a high performance cathode for aqueous zinc-ion battery. Small 16:2000597

    Article  CAS  Google Scholar 

  14. Liu G, Huang H, Bi R, Xiao X, Ma T, Zhang L (2019) K+ pre-intercalated manganese dioxide with enhanced Zn2+ diffusion for high rate and durable aqueous zinc-ion batteries. J. Mater. Chem. A 7:20806–20812

    Article  CAS  Google Scholar 

  15. Tan J, Feng TT, Hu S, Liang YF, Zhang S, Xu ZQ, Zhou HP, Wu MQ (2022) In situ synthesis of a self-supported MnO2-based cathode for high-performance zinc-ion batteries by K+ pre-intercalation. Appl Surf Sci 604:154578

    Article  CAS  Google Scholar 

  16. Jiao Y, Kang L, Berry-Gair J, McColl K, Li J, Dong H, Jiang H, Wang R, Cora F, Brett DJL, He G, Parkin IP (2020) Enabling stable MnO2 matrix for aqueous zinc-ion battery cathodes. J Mater Chem A 8:22075–22082

    Article  CAS  Google Scholar 

  17. Fang G, Zhu C, Chen M, Zhou J, Tang B, Cao X, Zheng X, Pan A, Liang S (2019) Suppressing manganese dissolution in potassium manganate with rich oxygen defects engaged high-energy-density and durable aqueous zinc-ion battery. Adv Func Mater 29:1808375

    Article  Google Scholar 

  18. Xie Q, Cheng G, Xue T, Huang L, Chen S, Sun Y, Sun M, Wang H, Yu L (2022) Alkali ions pre-intercalation of δ-MnO2 nanosheets for high-capacity and stable Zn-ion battery. Mater Today Energy 24:100934

    Article  CAS  Google Scholar 

  19. Boppana VBR, Yusuf S, Hutchings GS, Jiao F (2013) Nanostructured alkaline-cation-containing δ-MnO2 for photocatalytic water oxidation. Adv Func Mater 23:878–884

    Article  CAS  Google Scholar 

  20. Gao S, Sun Z, Liu W, Jiao X, Zu X, Hu Q, Sun Y, Yao T, Zhang W, Wei S, Xie Y (2017) Atomic layer confined vacancies for atomic-level insights into carbon dioxide electroreduction. Nat Commun 8:14503

    Article  CAS  Google Scholar 

  21. Banger KK, Yamashita Y, Mori K, Peterson RL, Leedham T, Rickard J, Sirringhaus H (2011) Low-temperature, high-performance solution-processed metal oxide thin-film transistors formed by a ‘sol–gel on chip’ process. Nat Mater 10:45–50

    Article  CAS  Google Scholar 

  22. Zhou S, Wu X, Du H, He Z, Wu X, Wu X (2022) Dual metal ions and water molecular pre-intercalated δ-MnO2 spherical microflowers for aqueous zinc ion batteries. J Colloid Interface Sci 623:456–466

    Article  CAS  Google Scholar 

  23. Chong S, Wu Y, Liu C, Chen Y, Guo S, Liu Y, Cao G (2018) Cryptomelane-type MnO2/carbon nanotube hybrids as bifunctional electrode material for high capacity potassium-ion full batteries. Nano Energy 54:106–115

    Article  CAS  Google Scholar 

  24. Xiao L, Xiao J, Yu X, Yan P, Zheng J, Engelhard M, Bhattacharya P, Wang C, Yang X-Q, Zhang J-G (2015) Effects of structural defects on the electrochemical activation of Li2MnO3. Nano Energy 16:143–151

    Article  CAS  Google Scholar 

  25. Huang Z, Li X, Yang Q, Ma L, Mo F, Liang G, Wang D, Liu Z, Li H, Zhi C (2019) Ni3S2/Ni nanosheet arrays for high-performance flexible zinc hybrid batteries with evident two-stage charge and discharge processes. J Mater Chem A 7:18915–18924

    Article  CAS  Google Scholar 

  26. Pan H, Shao Y, Yan P, Cheng Y, Han KS, Nie Z, Wang C, Yang J, Li X, Bhattacharya P, Mueller KT, Liu J (2016) Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat Energy 1:16039

    Article  CAS  Google Scholar 

  27. Wang D, Wang L, Liang G, Li H, Liu Z, Tang Z, Liang J, Zhi C (2019) A Superior delta-MnO2 cathode and a self-healing Zn-delta-MnO2 battery. ACS Nano 13:10643–10652

    Article  CAS  Google Scholar 

  28. Sun W, Wang F, Hou S, Yang C, Fan X, Ma Z, Gao T, Han F, Hu R, Zhu M, Wang C (2017) Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J Am Chem Soc 139:9775–9778

    Article  CAS  Google Scholar 

  29. Huang J, Wang Z, Hou M, Dong X, Liu Y, Wang Y, Xia Y (2018) Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nat Commun 9:2906

    Article  Google Scholar 

  30. Song M, Tan H, Chao D, Fan HJ (2018) Recent advances in Zn-ion batteries. Adv Func Mater 28:1802564

    Article  Google Scholar 

  31. Wu B, Zhang G, Yan M, Xiong T, He P, He L, Xu X, Mai L (2018) Graphene scroll-coated α-MnO2 nanowires as high-performance cathode materials for aqueous Zn-ion battery. Small 14:1703850

    Article  Google Scholar 

  32. Chamoun M, Brant WR, Tai C-W, Karlsson G, Noréus D (2018) Rechargeability of aqueous sulfate Zn/MnO2 batteries enhanced by accessible Mn2+ ions. Energy Storage Mater 15:351–360

    Article  Google Scholar 

  33. Wang JJ, Wang JG, Qin XP, Wang Y, You ZY, Liu HY, Shao MH (2020) Superfine MnO2 nanowires with rich defects toward boosted zinc ion storage performance. ACS Appl Mater Interfaces 12:34949–34958

    Article  CAS  Google Scholar 

  34. Fehse M, Trócoli R, Ventosa E, Hernández E, Sepúlveda A, Morata A, Tarancón A (2017) Ultrafast dischargeable LiMn2O4 thin-film electrodes with pseudocapacitive properties for microbatteries. ACS Appl Mater Interfaces 9:5295–5301

    Article  CAS  Google Scholar 

  35. Lindström H, Södergren S, Solbrand A, Rensmo H, Hjelm J, Hagfeldt A, Lindquist S-E (1997) Li+ ion insertion in TiO2 (Anatase) 2 voltammetry on nanoporous films. J Phys Chem B 101:7717–7722

    Article  Google Scholar 

  36. Chen X, Li W, Zeng Z, Reed D, Li X, Liu X (2021) Engineering stable Zn-MnO2 batteries by synergistic stabilization between the carbon nanofiber core and birnessite-MnO2 nanosheets shell. Chem Eng J 405:126969

    Article  CAS  Google Scholar 

  37. Zhang YX, Cui XS, Liu YP, Cheng ST, Cui P, Wu Y, Sun ZH, Shao ZP, Fu JC, Xie EQ (2022) Aqueous Zn-MnO2 battery: approaching the energy storage limit with deep Zn2+ pre-intercalation and revealing the ions insertion/extraction mechanisms. J Energy Chem 67:225–232

    Article  CAS  Google Scholar 

  38. Zhang YA, Liu YP, Liu ZH, Wu XG, Wen YX, Chen HD, Ni X, Liu GH, Huang JJ, Peng SL (2022) MnO2 cathode materials with the improved stability via nitrogen doping for aqueous zinc-ion batteries. J Energy Chem 64:23–32

    Article  CAS  Google Scholar 

  39. Chen L, An Q, Mai L (2019) Recent advances and prospects of cathode materials for rechargeable aqueous zinc-ion batteries. Adv Mater Interfaces 6:1900387

    Article  Google Scholar 

  40. Yang C, Han MN, Yan HH, Li F, Shi MJ, Zhao LP (2020) In-situ probing phase evolution and electrochemical mechanism of ZnMn2O4 nanoparticles anchored on porous carbon polyhedrons in high-performance aqueous Zn-ion batteries. J Power Sources 452:227826

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financial supported by National Natural Science Foundation of China (No. 1211101294) and Intergovernmental Science and Technology Regular Meeting Exchange Project of Ministry of Science and Technology of China (CB02-20).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanguang Nie or Enjia Ye.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest related to the article entitled ‘Potassium pre-intercalated manganese dioxide nanoflakes for high-performance aqueous zinc ion batteries’.

Additional information

Handling Editor: Mark Bissett.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 1922 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, T., Nie, Y., Yuan, X. et al. Potassium pre-intercalated manganese dioxide nanoflakes for high-performance aqueous zinc ion batteries. J Mater Sci 58, 4853–4864 (2023). https://doi.org/10.1007/s10853-023-08325-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08325-6

Navigation