Skip to main content
Log in

Improvement of Ni-based catalyst properties and activity for dry reforming of methane by application of all-in-one preparation method

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The catalyst activity and resistance to coke deposition are of great importance for DRM reaction and the catalyst preparation method is one way to evaluate these parameters, besides improving the catalyst properties. Therefore, the effect of two catalyst preparation methods (incipient wetness impregnation (IWI) and all-in-one (AIO) methods) of ceria-alumina-supported Ni-based catalysts on dry reforming of methane reaction was investigated. The catalysts were characterized by several characterization techniques. All-in-one method provided greater dispersion and a higher reduced fraction for the catalyst than the IWI method, besides increasing the presence of weak basic sites, which decreases carbon deposition. The catalytic tests exhibited higher conversions for the AIO catalyst (47% for CH4 and 61% for CO2) that can be attributed to the greater metal dispersion of this catalyst to detriment of the IWI catalyst (39% for CH4 and 53% for CO2) and to the higher amount of weak basic sites provided by the AIO preparation method. Nevertheless, the IWI catalyst showed higher TOF compared to the AIO catalyst due to the weaker metal–support interaction of the former catalyst, although this is compensated by the higher number of active sites of the AIO sample. Finally, all-in-one method arises as a promising catalyst preparation technique for catalysts applied to DRM reaction since this methodology increases metal dispersion, catalyst activity, and resistance to coking.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Wang W, Wang S, Ma X, Gong J (2011) Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev 40(7):3703–3727. https://doi.org/10.1039/C1CS15008A

    Article  CAS  Google Scholar 

  2. Lee J-U, Han J-H, Lee I-B (2012) A Multiobjective optimization approach for CCS infrastructure considering cost and environmental impact. Ind Eng Chem Res 51(43):14145–14157. https://doi.org/10.1021/ie3009583

    Article  CAS  Google Scholar 

  3. Debek R, Motak M, Galvez ME, Grzybek T, Costa P (2018) Promotion effect of zirconia on Mg(Ni, Al)O mixed oxides derived from hydrotalcites in CO2 methane reforming. Appl Catal B Environ 223:36–46. https://doi.org/10.1016/j.apcatb.2017.06.024

    Article  CAS  Google Scholar 

  4. Damyanova S, Pawelec B, Palcheva R, Karakirova Y, Sanchez MCC, Tyuliev G, Gaigneaux E, Fierro JLG (2017) Structure and surface properties of ceria-modified Ni-based catalysts for hydrogen production. Appl Catal B Environ 225:340–353. https://doi.org/10.1016/j.apcatb.2017.12.002

    Article  CAS  Google Scholar 

  5. Gurav HR, Dama S, Samuel V, Chilukuri S (2017) Influence of preparation method on activity and stability of Ni catalysts supported on Gd doped ceria in dry reforming of methane. J CO2 Util 20:357–367. https://doi.org/10.1016/j.jcou.2017.06.014

    Article  CAS  Google Scholar 

  6. Li M, Van Veen AC (2018) Coupled reforming of methane to syngas (2H2-CO) over Mg–Al oxide supported Ni catalyst. Appl Catal Gen 550:176–183. https://doi.org/10.1016/j.apcata.2017.11.004

    Article  CAS  Google Scholar 

  7. Ross JRH (2005) Natural gas reforming and CO2 mitigation. Catal Today 100(1–2):151–158. https://doi.org/10.1016/j.cattod.2005.03.044

    Article  CAS  Google Scholar 

  8. Akbari E, Alavi SM, Rezaei M (2017) Synthesis gas production over highly active and stable nanostructured Ni-MgO-Al2O3 catalysts in dry reforming of methane: effects of Ni contents. Fuel 194:171–179. https://doi.org/10.1016/j.fuel.2017.01.018

    Article  CAS  Google Scholar 

  9. Aramouni NAK, Touma JG, Tarboush BA, Zeaiter J, Ahmad MN (2018) Catalyst design for dry reforming of methane: analysis review. Renew Sustain Energ Rev 82:2570–2585. https://doi.org/10.1016/j.rser.2017.09.076

    Article  CAS  Google Scholar 

  10. Li M, Van Veen AC (2018) Tuning the catalytic performance of Ni-catalysed dry reforming of methane and carbon deposition via Ni-CeO 2–x interaction. Appl Catal B Environ 237:6641–6648. https://doi.org/10.1016/j.apcatb.2018.06.032

    Article  CAS  Google Scholar 

  11. Wolfbeisser A, Sophiphun O, Bernardi J, Wittayakun J, Fottinger K, Rupprechter G (2016) Methane dry reforming over ceria-zirconia supported Ni catalysts. Catal Today 277(2):234–245. https://doi.org/10.1016/j.cattod.2016.04.025

    Article  CAS  Google Scholar 

  12. Park JH, Yeo S, Kang T-J, Heo I, Lee K-Y, Chang T-S (2018) Enhanced stability of CO catalysts supported on phosphorus-modified Al2O3 for dry reforming of CH4. Fuel 212:77–87. https://doi.org/10.1016/j.fuel.2017.09.090

    Article  CAS  Google Scholar 

  13. Theofanidis SA, Galvita VV, Sabbe M, Poelman H, Detavernier C, Marin GB (2017) Controlling the stability of a Fe–Ni reforming catalyst: structural organization of the active components. Appl Catal B Environ 209:405–416. https://doi.org/10.1016/j.apcatb.2017.03.025

    Article  CAS  Google Scholar 

  14. Damaskinos CM, Zavašnik J, Djinović P, Efstathiou AM (2021) Dry reforming of methane over Ni/Ce0.8Ti0.2O2-δ: the effect of Ni particle size on the carbon pathways studied by transient and isotopic techniques. Appl Catal B Environ 296:120321. https://doi.org/10.1016/j.apcatb.2021.120321

    Article  CAS  Google Scholar 

  15. Han JW, Park JS, Choi MS, Lee H (2017) Uncoupling the size and support effects of Ni catalysts for dry reforming of methane. Appl Catal B Environ 203:625–632. https://doi.org/10.1016/j.apcatb.2016.10.069

    Article  CAS  Google Scholar 

  16. Shin SA, Noh YS, Hong GH, Park JI, Song HT, Lee K-Y, Moon DJ (2018) Dry reforming of methane over Ni/ZrO2-Al2O3 catalysts: effect of preparation methods. J Taiwan Inst Chem Eng 90:25–32. https://doi.org/10.1016/j.jtice.2017.11.032

    Article  CAS  Google Scholar 

  17. Zhao Y, Li H, Li H (2018) NiCo@SiO2 core-shell catalyst with high activity and long lifetime for CO2 conversion through DRM reaction. Nano Energy 45:101–108. https://doi.org/10.1016/j.nanoen.2017.12.023

    Article  CAS  Google Scholar 

  18. Djinović P, Crnivec IGO, Erjavec B, Pintar A (2012) Influence of active metal loading and oxygen mobility on coke-free dry reforming of Ni–Co bimetallic catalysts. Appl Catal B Environ 125:259–270. https://doi.org/10.1016/j.apcatb.2012.05.049

    Article  CAS  Google Scholar 

  19. Azancot L, Bobadilla LF, Santos JL, Córdoba JM, Centeno MA, Odriozola JA (2019) Influence of the preparation method in the metal-support interaction and reducibility of Ni–Mg–Al based catalysts for methane steam reforming. Int J Hydrog Energy 44(36):19827–19840. https://doi.org/10.1016/j.ijhydene.2019.05.167

    Article  CAS  Google Scholar 

  20. Wang F, Xu L, Zhang J, Zhao Y, Li H, Li HX, Wu K, Xu GQ, Chen W (2016) Tuning the metal-support interaction in catalysts for highly efficient methane dry reforming reaction. Appl Catal B Environ 180:511–520. https://doi.org/10.1016/j.apcatb.2015.07.001

    Article  CAS  Google Scholar 

  21. Shin SA, Noh YS, Hong GH, Park JI, Song HT, Lee KW, Moon DJ (2018) Dry reforing of methane over Ni/ZrO2-Al2O3 catalysts: effect of preparation methods. J Taiwan Inst Chem Eng 90:25–32. https://doi.org/10.1016/j.jtice.2017.11.032

    Article  CAS  Google Scholar 

  22. Li Y, Wang Y, Zhang X, Ding X, Liu Z, Zhu R, Wu L, Zheng L (2022) Ni supported on natural clay palygorskite as catalyst for dry reforming of methane: thermodynamic analysis and impacts of preparation methods. Int J Hydrog Energy 47(48):20851–20866. https://doi.org/10.1016/j.ijhydene.2022.04.195

    Article  CAS  Google Scholar 

  23. Sun S, Mao D, Yu J (2015) Enhanced CO oxidation activity of CuO/CeO2 catalyst prepared by surfactant-assisted impregnation method. J Rare Earths 33(12):1268–1274. https://doi.org/10.1016/S1002-0721(14)60556-1

    Article  CAS  Google Scholar 

  24. Zhang L, Zhang Y, Deng J, Dai H (2012) Surfactant-aided hydrothermal preparation of La2-xSrxCuO4 single crystallites and their catalytic performance on methane combustion. J Nat Gas Chem 21(1):69–75. https://doi.org/10.1016/S1003-9953(11)60335-6

    Article  CAS  Google Scholar 

  25. Aguiar EFS, Costa AF, Pascual LMG, Santos IB, Manterola MCA, Almeida LC, Ramírez MM, Gordon JAO (2014) Inventor; Petróleo Brasileiro S.A. PETROBRAS, assignee. Method for preparing structured catalytic systems. World patent WO 2014/085890 AI. 2014 Jun 12

  26. Li R, Rao L, Zhang J, Shen L, Xu Y, You X, Liao BQ, Lin H (2021) Novel in-situ electroflotation driven by hydrogen evolution reaction (HER) with polypyrrole (PPy)-Ni-modified fabric membrane for efficient oil/water separation. J Membr Sci 635:119502. https://doi.org/10.1016/j.memsci.2021.119502

    Article  CAS  Google Scholar 

  27. Echave FJ, Sanz O, Montes M (2014) Washcoating of micro-channel reactors with PdZnO catalyst for methanol steam reforming. App Catal Gen 474:159–167. https://doi.org/10.1016/j.apcata.2013.07.058

    Article  CAS  Google Scholar 

  28. Egaña A, Sanz O, Merino D, Moriones X, Montes M (2018) Fischer-Tropsch synthesis intensification in foam structures. Ind Eng Chem Res 57:10187–10197. https://doi.org/10.1021/acs.iecr.8b01492

    Article  CAS  Google Scholar 

  29. Merino D, Sanz O, Montes M (2017) Effect of the thermal conductivity and catalyst layer thickness on the Fischer-Tropsch synthesis selectivity using structured catalysts. Chem Eng J 327:1033–1042. https://doi.org/10.1016/j.cej.2017.07.003

    Article  CAS  Google Scholar 

  30. Kamonsuangkasem K, Therdthianwong S, Therdthianwong A, Thammajak N (2017) Remarkable activity and stability of Ni catalyst supported on CeO2-Al2O3 via CeAlO3 perovskite towards glycerol steam reforming for hydrogen production. Appl Catal B Environ 218:650–663. https://doi.org/10.1016/j.apcatb.2017.06.073

    Article  CAS  Google Scholar 

  31. Ali IO (2014) Sol-gel synthesis of NiFe2O4 with PVA matrices and their catalytic activities for one-step hydroxylation of benzene into phenol. J Therm Anal Calorim 116(2):805–816. https://doi.org/10.1007/s10973-013-3584-3

    Article  CAS  Google Scholar 

  32. Ali IO, Nassar HS, Naglah AM, Al-Harbi LM, Elhenawy AA (2021) Structural and spectroscopic characteristics of NiII and CuII complexes with poly (Vinyl alcohol-nicotinic acid) copolymers for photocatalytic degradation of indigo carmine dye. Crystals 11(10):1244. https://doi.org/10.3390/cryst11101244

    Article  CAS  Google Scholar 

  33. Kazemnejadi M, Sardarian AR (2016) Ecofriendly synthesis of a heterogeneous polyvinyl alcohol immobilized copper (II) Schiff base complex as an efficient, reusable catalyst for the one-pot three-component green preparation of 5-substituted 1: H -tetrazoles under mild conditions. RSC Adv 6(94):91999–2006. https://doi.org/10.1039/c6ra19631d

    Article  CAS  Google Scholar 

  34. Liu J, Wang J, Zhao Z, Xu C, Wei Y, Duan A, Giang G (2014) Synthesis of LaxK1-xCoO3 nanorod and their catalytic performances for CO oxidation. J Rare Earths 32(2):170–175. https://doi.org/10.1016/S1002-0721(14)60047-8

    Article  CAS  Google Scholar 

  35. Zhuang Y, Wang X, Zhang L, Dionysiou DD, Shi B (2019) Fe-Chelated polymer templated graphene aerogel with enhanced fenton-like efficiency for water treatment. Environ Sci Nano 6(11):3232–3241. https://doi.org/10.1039/C9EN00924H

    Article  CAS  Google Scholar 

  36. Bozdag AA, Sezgi NA, Dogu T (2022) Effects of synthesis route on the performance of mesoporous ceria-alumina and ceria-zirconia-alumina supported nickel catalysts in steam and autothermal reforming of diesel. Int J Hydrog Energ 47(7):4568–4583. https://doi.org/10.1016/j.ijhydene.2021.11.107

    Article  CAS  Google Scholar 

  37. Stroud T, Smith TJ, Le Saché E, Santos JL, Centeno MA, Arellano-Garcia H, Odriozola JA, Reina TR (2018) Chemical CO2 recycling via dry and bi reforming of methane using Ni-Sn/Al2O3 and Ni-Sn/CeO2-Al2O3 catalysts. Appl Catal B Environ 224:125–135. https://doi.org/10.1016/j.apcatb.2017.10.047

    Article  CAS  Google Scholar 

  38. Xiong H, Zhang Y, Liew K, Li J (2009) Ruthenium promotion of Co/SBA-15 catalysts with high cobalt loading for Fischer-Tropsch synthesis. Fuel Process Technol 90(2):237–246. https://doi.org/10.1016/j.fuproc.2008.08.014

    Article  CAS  Google Scholar 

  39. Zhang X, Li W, Zhou Z, Chen K, Wu M, Yuan L (2021) High dispersed Pd supported on CeO2 (1 0 0) for CO oxidation at low temperature. Mol Catal 508:111580. https://doi.org/10.1016/j.mcat.2021.111580

    Article  CAS  Google Scholar 

  40. Bian Z, Zhong W, Yu Y, Wang Z, Jiang B, Kawi S (2021) Dry reforming of methane on Ni/mesoporous-Al2O3 catalysts: effect of calcination temperature. Int J Hydrog Energ 46(60):31041–31053. https://doi.org/10.1016/j.ijhydene.2020.12.064

    Article  CAS  Google Scholar 

  41. Li C, Chen YW (1995) Temperature-programmed-reduction studies of nickel oxide/alumina catalysts: effects of the preparation method. Thermochim Acta 256(2):457–465. https://doi.org/10.1016/0040-6031(94)02177-P

    Article  CAS  Google Scholar 

  42. Mo W, Ma F, Ma Y, Fan X (2019) The optimization of Ni–Al2O3 catalyst with the addition of La2O3 for CO2–CH4 reforming to produce syngas. Int J Hydrog Energ 44(45):24510–24524. https://doi.org/10.1016/j.ijhydene.2019.07.204

    Article  CAS  Google Scholar 

  43. Zhang J, Xu H, Jin X, Ge Q, Li W (2005) Characterizations and activities of the nano-sized Ni/Al2O3 and Ni/La-Al2O3 catalysts for NH3 decomposition. Appl Catal Gen 290:87–96. https://doi.org/10.1016/j.apcata.2005.05.020

    Article  CAS  Google Scholar 

  44. Le TA, Kim J, Kang JK, Park ED (2020) CO and CO2 methanation over Ni/Al@Al2O3 core–shell catalyst. Catal Today 356:622–630. https://doi.org/10.1016/j.cattod.2019.09.028

    Article  CAS  Google Scholar 

  45. Patel R, Al-Fatesh AS, Fakeeha AH, Arafat Y, Kasim SO, Ibrahim AA, Al-Zahrani SA, Abasaeed AE, Srivastava VK, Kumar R (2021) Impact of ceria over WO3–ZrO2 supported Ni catalyst towards hydrogen production through dry reforming of methane. Int J Hydrog Energ 46(49):25015–25028. https://doi.org/10.1016/j.ijhydene.2021.05.049

    Article  CAS  Google Scholar 

  46. Świrk K, Zhang H, Li S, Chen Y, Ronning M, Motak M, Grzybek T, Da Costa P (2021) Carbon-resistant NiO-Y2O3-nanostructured catalysts derived from double-layered hydroxides for dry reforming of methane. Catal Today 366:103–113. https://doi.org/10.1016/j.cattod.2020.03.032

    Article  CAS  Google Scholar 

  47. Świrk K, Ronning M, Motak M, Grzybek T, Da Costa P (2021) Synthesis strategies of Zr and Y-promoted mixed oxides derived from double-layered hydroxides for syngas production via dry reforming of methane. Int J Hydrog Energ 46(22):12128–12144. https://doi.org/10.1016/j.ijhydene.2020.04.239

    Article  CAS  Google Scholar 

  48. Yadav PK, Dahiya P, Mandal TK, Das T (2022) The bulk and supported perovskite-type catalysts for the CO2 reforming of methane: the effect of ceria and magnesia. J Taiwan Inst Chem Eng 140:104509. https://doi.org/10.1016/j.jtice.2022.104509

    Article  CAS  Google Scholar 

  49. Ranjekar AM, Yadav GD (2021) Dry reforming of methane for syngas production: a review and assessment of catalyst development and efficacy. J Indian Chem Soc 98(1):100002. https://doi.org/10.1016/j.jics.2021.100002

    Article  CAS  Google Scholar 

  50. Nazari M, Alavi SM (2020) An investigation of the simultaneous presence of Cu and Zn in different Ni/Al2O3 catalyst loads using Taguchi design of experiment in steam reforming of methane. Int J Hydrog Energ 45(1):691–702. https://doi.org/10.1016/j.ijhydene.2019.10.224

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (Capes)—Finance Code 001. The authors acknowledge the University of the Basque Country (GIU21/033) and the Federal University of Pernambuco.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano C. Almeida.

Additional information

Handling Editor: Pedro Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribeiro, A.T.S., Araújo, Í.R.S., da Silva, E.F.M. et al. Improvement of Ni-based catalyst properties and activity for dry reforming of methane by application of all-in-one preparation method. J Mater Sci 58, 3568–3581 (2023). https://doi.org/10.1007/s10853-023-08261-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08261-5

Navigation