Skip to main content
Log in

Sol–gel synthesis of NiFe2O4 with PVA matrices and their catalytic activities for one-step hydroxylation of benzene into phenol

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Nickel ferrite (NiFe2O4) was synthesized using citric acid (CA) as a chelating agent and varying amounts of polyvinyl alcohol (PVA) as powder binder via a combustion process. The influence of PVA/NiFe2O4 blend composition on the phase, crystal structure, and morphology has been investigated by X-ray diffraction (XRD), scanning electron microscopy, and Fourier transform infrared spectroscopy, respectively. The probable assignments of the thermal degradation products of PVA/NiFe2O4 were studied by complementary thermogravimetric analysis and differential thermal analysis. The PVA/NiFe2O4 crystals preferentially oriented along the (311) plane as revealed by XRD, owing to diffusion of α-Fe2O3 particles into the lattice matrix where the rate of diffusion increased significantly with the PVA concentration increase from 0.1 to 0.3 mol%. A vibrational doublet at 1,644 and 1,609 cm−1 for the ≡Fe–O–COOH complex was emitted in the spectra of PVA-impregnated NiFe2O4 to assure the attachment of Fe(III) to the chelating agents CA/PVA. Thermal kinetic consideration based on Coats–Redfern and Horowitz–Metzger equations at subsequent decomposition steps of CA/PVA/NiFe2O4 illustrated that the values of activation free energy ΔG* increase significantly, indicating the non-spontaneous behavior. The one-step direct hydroxylation of benzene toward phenol has been extensively investigated using hydrogen peroxide as an oxidant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

PVA:

Polyvinyl alcohol

CA:

Citric acid

XRD:

X-ray diffraction analysis

FT-IR:

Fourier transform infrared

E :

Activation energy (kJ mol−1)

ΔG*:

Activation Gibbs free energy change (kJ mol−1)

ΔH*:

Activation enthalpy change (kJ mol−1)

ΔS*:

Entropy change (kJ mol−1)

A :

Arrhenius factor (S−1)

T :

Kelvin temperature (K)

CR:

Coats–Redfern

HM:

Horowitz–Metzger

W f :

Mass loss at the completion of the reaction

W :

Mass loss

TG:

Thermogravimetric analysis

DTA:

Differential thermal analysis

SEM:

Scanning electron micrographs

R :

Universal gas constant

k :

Boltzmann constants

h :

Planck constants

References

  1. Gunjakar JL, More AM, Gurav KV, Lokhande CD. Chemical synthesis of spinel nickel ferrite (NiFe2O4) nano-sheets. Appl Surf Sci. 2008;254:5844–8.

    Article  CAS  Google Scholar 

  2. Gopal Reddy CV, Manorama SV, Rao VJ. Preparation and characterization of ferrites as gas sensor materials. J Mater Sci Lett. 2000;19:775–8.

    Article  Google Scholar 

  3. Nuli YN, Qin QZ. Nanocrystalline transition metal ferrite thin films prepared by an electrochemical route for Li-ion batteries. J Power Sources. 2005;142:292–7.

    Article  CAS  Google Scholar 

  4. Gibson MA, Hightower JW. Oxidative dehydrogenation of butenes over magnesium ferrite kinetic and mechanistic studies. J Catal. 1976;41:420–30.

    Article  CAS  Google Scholar 

  5. Manova E, Tsoncheva T, Paneva D, Mitov I, Tenchev K, Petrov L. Mechanochemically synthesized nano-dimensional iron–cobalt spinel oxides as catalysts for methanol decomposition. Appl Catal A. 2004;277:119–27.

    Article  CAS  Google Scholar 

  6. Oliveira LCA, Fabris JD, Rios RRVA, Mussel WN. Fe3−x Mn x O4 catalysts: phase transformations and carbon monoxide oxidation. Appl Catal A. 2004;259:253–9.

    Article  CAS  Google Scholar 

  7. PalDey S, Gedevanishvii S, Zhang W, Rasouli F. Evaluation of a spinel based pigment system as a CO oxidation catalyst. Appl Catal B. 2005;56:241–50.

    Article  CAS  Google Scholar 

  8. Xiong CR, Chen QL, Lu WR, Gao HX, Lu WK, Gao Z. Novel Fe-based complex oxide catalysts for hydroxylation of phenol. Catal Lett. 2000;69:231–6.

    Article  CAS  Google Scholar 

  9. Sreekumar K, Sugunan S. Ferrospinels based on Co and Ni prepared via a low temperature route as efficient catalysts for the selective synthesis of o-cresol and 2,6-xylenol from phenol and methanol. J Mol Catal A. 2002;185:259–68.

    Article  CAS  Google Scholar 

  10. Kinemuchi Y, Ishizaka K, Suematsu H, Jiang W, Yatsui K. Magnetic properties of nanosize NiFe2O4 particles synthesized by pulsed wire discharge. Thin Solid Films. 2002;407:109–13.

    Article  CAS  Google Scholar 

  11. Kale A, Gubbala S, Misra RDK. Magnetic behavior of nanocrystalline nickel ferrite synthesized by the reverse micelle technique. J Magn Magn Mater. 2004;277:350–8.

    Article  CAS  Google Scholar 

  12. Urda A, Herraiz A, Redey A, Marcu IC. Co and Ni ferrospinels as catalysts for propane total oxidation. Catal Commun. 2009;10:1651–5.

    Article  CAS  Google Scholar 

  13. Florea M, Alifanti M, Parvulescu VI, Mihaila-Tarabasanu D, Diamandescu L, Feder M, Negrila C, Frunza L. Total oxidation of toluene on ferrite-type catalysts. Catal Today. 2009;141:361–6.

    Article  CAS  Google Scholar 

  14. Xu S, Shangguan W, Yuan J, Chen M, Shi J. Preparations and photocatalytic properties of magnetically separable nitrogen-doped TiO2 supported on nickel ferrite. Appl Catal B. 2007;71:177–84.

    Article  CAS  Google Scholar 

  15. Russo N, Fino D, Saracco G, Specchia V. N2O catalytic decomposition over various spinel-type oxides. Catal Today. 2007;119:228–32.

    Article  CAS  Google Scholar 

  16. Lee H, Jung JC, Kim H, Chung Y-M, Kim TJ, Lee SJ, Oh S-H, Kim YS, Song IK. Effect of divalent metal component (MeII) on the catalytic performance of MeIIFe2O4 catalysts in the oxidative dehydrogenation of n-butene to 1,3-butadiene. Catal Lett. 2008;124:364–8.

    Article  CAS  Google Scholar 

  17. Feng S, Yang W, Wang Z. Synthesis of porous NiFe2O4 microparticles and its catalytic properties for methane combustion. Mater Sci Eng B. 2011;176:1509–12.

    Article  CAS  Google Scholar 

  18. Ren Y, Dong Q, Feng J, Ma J, Wen Q, Zhang M. Magnetic porous ferrospinel NiFe2O4: a novel ozonation catalyst with strong catalytic property for degradation of di-n-butyl phthalate and convenient separation from water. J Colloid Interface Sci. 2012;382:90–6.

    Article  CAS  Google Scholar 

  19. Gotic M, Czako-Nagy I, Popovic S, Music S. Formation of nanocrystalline NiFe2O4. Philos Mag Lett. 1998;78:193–201.

    Article  Google Scholar 

  20. Schaefer H, Kisker H, Kronmuller H, Wurschum R. Magnetic properties of nanocrystalline nickel. Nanostruct Mater. 1992;1:523–9.

    Article  CAS  Google Scholar 

  21. Nathani H, Gubbala S, Misra RDK. Magnetic behavior of nanocrystalline nickel ferrite. Part I. The effect of surface roughness. Mater Sci Eng B. 2005;121:126–36.

    Article  CAS  Google Scholar 

  22. El-Shobaky GA, Fagal GA, Abd el-Aal A, Ghozza AM. Solid–solid interactions in the NiOFe2O3 system with and without LiO2 doping. Thermochim Acta. 1995;256:429–41.

    Article  CAS  Google Scholar 

  23. Xiao SH, Jiang WF, Li LY, Li XJ. Low-temperature auto-combustion synthesis and magnetic properties of cobalt ferrite nanopowder. Mater Chem Phys. 2007;106:82–7.

    Article  CAS  Google Scholar 

  24. Habibi MH, Habibi AH, Zendehdel M, Habibi M. Dye-sensitized solar cell characteristics of nanocomposite zinc ferrite working electrode: effect of composite precursors and titania as a blocking layer on photovoltaic performance. Spectrochim Acta A. 2013;110:226–32.

    Article  CAS  Google Scholar 

  25. Habibi M, Habibi A. Effect of the thermal treatment conditions on the formation of zinc ferrite nanocomposite, ZnFe2O4, by sol–gel method. J Therm Anal Calorim. 2013;113:843–7.

    Article  CAS  Google Scholar 

  26. Hyeon T. Chemical synthesis of magnetic nanoparticles. Chem Commun. 2003;8:927–34.

    Article  CAS  Google Scholar 

  27. Stober W, Fink A, Bohn EJ. Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci. 1968;26:62–9.

    Article  Google Scholar 

  28. Kommareddi NS, Tata M, Jhon VT, McPherson GL, Herman MF, Lee YS. Synthesis of superparamagnetic polymer–ferrite composites using surfactant microstructures. Chem Mater. 1996;8:801–9.

    Article  CAS  Google Scholar 

  29. Lelis MFF, Porto AO, Goncalves CM, Fabris JD. Cation occupancy sites in synthetic Co-doped magnetites as determined with X-ray absorption (XAS) and Mössbauer spectroscopies. J Magn Magn Mater. 2004;278:263–9.

    Article  CAS  Google Scholar 

  30. Kamellia N, Zabihi R. Preparation and magnetic properties of nano size nickel ferrite particles using hydrothermal method. Chem Cent J. 2012;6:23. doi:10.1186/1752-153X-6-23.

    Google Scholar 

  31. Hasab GM, Seyyed Ebrahimi SA, Badiei A. An investigation on physical properties of strontium hexaferrite nanopowder synthesized by a sol–gel auto-combustion process with addition of cationic surfactant. J Eur Ceram Soc. 2007;27:3637–40.

    Article  CAS  Google Scholar 

  32. Bragg WH, Bragg WL. The structure of the diamond. Nature. 1913;91:557–558.

    Article  Google Scholar 

  33. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bureau Stand. 1956;57:217–21.

    Article  CAS  Google Scholar 

  34. Burnham AK, Braun RL. Global kinetic analysis of complex materials. Energy Fuels. 1999;13:1–22.

    Article  CAS  Google Scholar 

  35. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68–9.

    Article  CAS  Google Scholar 

  36. Horowitz HH, Metzger G. A new analysis of thermogravimetric traces. Anal Chem. 1963;35:1464–8.

    Article  CAS  Google Scholar 

  37. Nath M, Arora P. Spectral and thermal studies of cobalt(II), nickel(II) and copper(II) complexes of schiff bases obtained from o-hydroxyacetophenone and amino acids. Synth React Inorg Met Org Chem. 1993;23:1523–46.

    Article  CAS  Google Scholar 

  38. Soliman AA, El-Medani SM, Ali OAM. Thermal study of chromium and molybdenum complexes with some nitrogen and nitrogen–oxygen donors ligands. J Therm Anal Calorim. 2006;83:385–92.

    Article  CAS  Google Scholar 

  39. Greenberg AE, Clesceri LS, Eaton AD, editors. Standard methods for the examination of water and wastewater. 17th ed. Washington, DC: American Public Health Association (APHA); 1989.

    Google Scholar 

  40. Tor A, Cengeloglu Y, Aydin ME, Ersoz M. Removal of phenol from aqueous phase by using neutralized red mud. J Colloid Interface Sci. 2006;300:498–503.

    Article  CAS  Google Scholar 

  41. Fu YP, Pan KY, Lin CH. Ni–Cu–Zn ferrite powder from steel pickled liquor and electroplating waste solutions. Mater Lett. 2002;57:291–6.

    Article  CAS  Google Scholar 

  42. Maensiri S, Masingboon C, Boonchom B, Seraphin S. A simple route to synthesize nickel ferrite (NiFe2O4) nanoparticles using egg white. Scr Mater. 2007;56:797–800.

    Article  CAS  Google Scholar 

  43. Ladgaonkar BP, Vaingainkar AS. X-ray diffraction investigation of cation distribution in Cd χ Cu1−χ Fe2O4 ferrite system. Mater Chem Phys. 1998;56:280–3.

    Article  CAS  Google Scholar 

  44. John Berchmans L, Kalai Selvan R, Selva Kumar PN, Augustin CO. Structural and electrical properties of Ni1−x Mg x Fe2O4 synthesized by citrate gel process. J Magn Magn Mater. 2004;279:103–10.

    Article  CAS  Google Scholar 

  45. Gunjakar JL, More AM, Shinde VR, Lokhande CD. Synthesis of nanocrystalline nickel ferrite (NiFe2O4) thin films using low temperature modified chemical method. J Alloy Compd. 2008;465:468–73.

    Article  CAS  Google Scholar 

  46. Socrates G. Infrared and Raman characteristic group frequencies: tables and charts. 3rd ed. Chichester: Wiley; 2001.

    Google Scholar 

  47. Su C, Suarez DL. In situ infrared speciation of adsorbed carbonate on aluminum and iron oxide. Clay Clay Miner. 1997;45:814–25.

    Article  CAS  Google Scholar 

  48. Zeng X, Liu Y, Wang X, Yin W, Wang L, Guo H. Preparation of nanocrystalline PbTiO3 by accelerated sol–gel process. Mater Chem Phys. 2002;77:209–14.

    Article  Google Scholar 

  49. Rama Rao GV, Surya Narayana DS, Varadaraju UV, Rao GVN, Venkadesan S. Synthesis of YBa2Cu3O7 through different gel routes. J Alloys Compd. 1995;217:200–8.

    Article  CAS  Google Scholar 

  50. Peng Z, Kong LX. A thermal degradation mechanism of polyvinyl alcohol/silica nanocomposites. Polym Degrad Stab. 2007;92:1061–71.

    Article  CAS  Google Scholar 

  51. Budrugeac P. Kinetics of the complex process of thermo-oxidative degradation of poly(vinyl alcohol). J Therm Anal Calorim. 2008;92:291–6.

    Article  CAS  Google Scholar 

  52. Rajendran S, Sivakumar M, Subadevi R, Nirmale M. Characterization of PVA–PVdF based solid polymer blend electrolytes. Physica B. 2004;348:73–8.

    Article  CAS  Google Scholar 

  53. Anbarasan R, Pandiarajaguru R, Prabhu R, Dhanalakshmi V, Jayalakshmi A, Dhanalakshmi B, Nisha SU, Gandhi S, Jayalakshmi T. Synthesis, characterizations, and mechanical properties of structurally modified poly(vinyl alcohol). J Appl Polym Sci. 2010;117:2059–68.

    Article  CAS  Google Scholar 

  54. Frost AA, Pearson RG. Kinetics and mechanism. 2nd ed. New York: Wiley; 1961. p. 88–100.

    Google Scholar 

  55. West DX, Yang Y, Klein TL, Goldberg KI, Liberta AE, Valdes-Matinez J, Hernandez-Ortega S. Binuclear copper(II) complexes of 2-hydroxyaceto-phenone 4 N-substituted thiosemicarbazones. Polyhedron. 1995;14:1681–93.

    Article  CAS  Google Scholar 

  56. Varma PCR, Colreavy J, Cassidy J, Oubaha M, Duffy B, McDonagh C. Effect of organic chelates on the performance of hybrid sol–gel coated AA 2024-T3 aluminium alloys. Prog Org Coat. 2009;66:406–11.

    Article  CAS  Google Scholar 

  57. Oubaha M, Etienne P, Calas S, Coudray P, Nedelec J, Moreau Y. Sol–gel derived organic and inorganic hybrid materials for photonic applications: contribution to the correlation between the material structure and the transmission in the near infrared region. J Sol–Gel Sci Technol. 2005;33:241–8.

    Article  CAS  Google Scholar 

  58. Lee SJ, Lee CH, Kriven WM. Synthesis of oxide ceramic powders by polymerized organic inorganic complex route. J Ceram Process Res. 2000;1:92–5.

    Google Scholar 

  59. Shi R, Bi J, Zhang Z, Zhu A, Chen A, Zhou X, Zhang L, Tian W. The effect of citric acid on the structural properties and cytotoxicity of the polyvinyl alcohol/starch films when molding at high temperature. Carbohydr Polym. 2008;74:763–70.

    Article  CAS  Google Scholar 

  60. Lu J, Liu B, Yang H, Luo W, Zou G. Surface modification of CrSi2 nanocrystals with polymer coating. Mater Sci Lett. 1998;17:1605–7.

    Article  CAS  Google Scholar 

  61. Peng T, Zhang X, Lv H, Zan L. Preparation of NiFe2O4 nanoparticles and its visible-light-driven photoactivity for hydrogen production. Catal Commun. 2012;28:116–9.

    Article  CAS  Google Scholar 

  62. Khosravi I, Eftekhar M. Characterization and evaluation catalytic efficiency of NiFe2O4 nano spinel in removal of reactive dye from aqueous solution. Powder Technol. 2013;250:147–53.

    Article  CAS  Google Scholar 

  63. Othman I, Mohamed RM, Ibrahim IA, Mohamed MM. Synthesis and modification of ZSM-5 with manganese and lanthanum and their effects on decolorization of indigo carmine dye. Appl Catal A. 2006;299:95–102.

    Article  CAS  Google Scholar 

  64. Canali L, Sherrington DC. Utilisation of homogeneous and supported chiral metal (salen) complexes in asymmetric catalysis. Chem Soc Rev. 1999;28:85–93.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibraheem Othman Ali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, I.O. Sol–gel synthesis of NiFe2O4 with PVA matrices and their catalytic activities for one-step hydroxylation of benzene into phenol. J Therm Anal Calorim 116, 805–816 (2014). https://doi.org/10.1007/s10973-013-3584-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3584-3

Keywords

Navigation