Skip to main content
Log in

A review on mechanical, tribological and electrochemical performance of ceramic particle-reinforced Ni-based electrodeposited composite coatings

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ni-based composite coatings have been widely used for various industrial applications due to their high electrical and thermal conductivity, hardness, corrosion resistance, wear resistance and magnetic properties. For example, the Ni alloy matrix provides good thermal conductivity, electrical conductivity and magnetic properties (Ni–Cu, Ni–Fe, Ni–P, Ni–B). The carbonaceous material reinforcement in pure Ni and alloy matrix (carbon nanotube, graphene and graphite) provides good thermal and electrical conductivities along with good mechanical and tribological properties. Further, the addition of ceramic particles (SiC, Al2O3, TiO2, ZrO2, Si3N4, TiN, AlN, TiC, etc.) in the pure and alloy matrix provides good mechanical, tribological and corrosion resistance properties. Thus, the ceramic particle-reinforced composite coatings can be used for several industrial applications such as automobiles, aerospace, oil and gas industries. The present review aims to provide an insight into the effect of processing parameters and ceramic particle reinforcements (oxides, carbides and nitrides) on the mechanical, tribological and electrochemical performance of the Ni-based electrodeposited coatings. It is noted that the pulse current (PC) method provides more uniform and compact coatings as compared to the direct current (DC) method. Further, it was observed that the co-deposition parameters, such as electrolyte bath concentration, current density and temperature, affect the properties of the coatings. Furthermore, the Ni-based PC-electrodeposited composite coatings reinforced with ceramic particles are reviewed in detail. It was observed that the fine grain structure in the coatings improves the mechanical strength of coatings due to the grain size strengthening mechanism. Moreover, the nano-sized ceramic particle reinforcement enhances the mechanical and tribological performance of the coatings due to their high hardness (particle strengthening) and uniform distribution (dispersion strengthening). Besides, the ceramic particle in the coatings reduces the tendency of localized and pitting corrosion mechanisms owing to their chemically inert nature and uniform distribution throughout the surface.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Reproduced with permission from reference [67]. Copyright [2006], [Elsevier]’ c SiC content in Ni-W/SiC nanocomposite (vol.%) coatings as a function of SiC addition in the electrolyte. ‘Reproduced with permission from reference [119]. Copyright [2020], [Elsevier]’ d amount of co-deposited TiO2 particles, at constant peak current density (8 Adm−2) and frequency (10 Hz). ‘Reproduced with permission from reference [71]. Copyright [2010], [Elsevier]’ and gravimetric percentage of embedded micro- and nano–SiC particles in the Ni–SiC deposits prepared using DC and pulse plating (frequency = 0.1 Hz) at various duty cycle ‘Reproduced with permission from reference [100]. Copyright [2005], [Elsevier]’

Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22

Similar content being viewed by others

References

  1. Mahdavi S, Allahkaram SR (2015) Composition, characteristics and tribological behavior of Cr, Co–Cr and Co–Cr/TiO2 nano-composite coatings electrodeposited from trivalent chromium based baths. J Alloy Compd 635:150–157

    Article  CAS  Google Scholar 

  2. Torabinejad V, Aliofkhazraei M, Assareh S et al (2017) Electrodeposition of Ni–Fe alloys, composites, and nano coatings–a review. J Alloy Compd 691:841–859

    Article  CAS  Google Scholar 

  3. Aruna ST, Srinivas G (2015) Wear and corrosion resistant properties of electrodeposited Ni composite coating containing Al2O3–TiO2 composite powder. Surf Eng 31:708–713

    Article  CAS  Google Scholar 

  4. Karimzadeh A, Aliofkhazraei M, Walsh FC (2019) A review of electrodeposited Ni–Co alloy and composite coatings: microstructure, properties and applications. Surf Coat Technol 372:463–498

    Article  CAS  Google Scholar 

  5. Ramesh CS, Seshadri SK, Lyer KJL (1993) Fatigue behaviour of nlckel-flyash composite coatings. J Mater Sci Lett 12:746

    Article  CAS  Google Scholar 

  6. Talib RJ, Saad S, Toff MRM, Hashim H (2003) Thermal spray processes combustion electric wire plasma. Solid State Sci Technol 11:109–117

    Google Scholar 

  7. Ariharan S, Maurya R (2021) Surface and coatings technology Assessment of plasma sprayed carbon nanotube reinforced Al2O3–based nanocomposite with micro-scratching. Surf Coat Technol 418:127216

    Article  Google Scholar 

  8. Jiang XY, Hu J, Jiang SL et al (2021) Effect of high-enthalpy atmospheric plasma spraying parameters on the mechanical and wear resistant properties of alumina ceramic coatings. Surf Coat Technol 418:127193

    Article  CAS  Google Scholar 

  9. Altun H, Sen S (2006) The effect of PVD coatings on the corrosion behaviour of AZ91 magnesium alloy. Mater Des 27:1174–1179

    Article  CAS  Google Scholar 

  10. Hoche H, Pusch C, Oechsner M (2020) Corrosion and wear protection of mild steel substrates by innovative PVD coatings. Surf Coat Technol 391:125659

    Article  CAS  Google Scholar 

  11. Manivannan R, Sundararaj S, Dheenasagar R et al (2021) Influence of Al2O3, SiC and B4C covalent multilayer PVD coating on surface properties of HSS rod. Mater Today Proc 39:700–707

    Article  CAS  Google Scholar 

  12. Pint BA, Zhang Y, Tortorelli PF et al (2001) Evaluation of iron-aluminide CVD coatings for high temperature corrosion protection. Mater High Temp 18:185–192

    Article  CAS  Google Scholar 

  13. Garg R, Rajagopalan N, Pyeon M et al (2018) Plasma CVD grown Al2O3 and MgAl2O4 coatings for corrosion protection applications. Surf Coat Technol 356:49–55

    Article  CAS  Google Scholar 

  14. Siddiqui AR, Maurya R, Katiyar PK, Balani K (2020) Superhydrophobic, self-cleaning carbon nanofiber CVD coating for corrosion protection of AISI 1020 steel and AZ31 magnesium alloys. Surf Coat Technol 404:126421

    Article  CAS  Google Scholar 

  15. Fahrenholtz WG, Keefe MJO, Zhou H, Grant JT (2002) Characterization of cerium-based conversion coatings for corrosion protection of aluminum alloys William G. Surf Coat Technol 155:208–213

    Article  CAS  Google Scholar 

  16. Maurya R, Siddiqui AR, Balani K (2017) In vitro degradation and biomineralization ability of hydroxyapatite coated Mg–Li9–Al7-Sn1 and Mg–Li9–Al5–Sn3–Zn1 alloys. Surf Coat Technol 325:65–74

    Article  CAS  Google Scholar 

  17. Maurya R, Siddiqui AR, Balani K (2018) An environment-friendly phosphate chemical conversion coating on novel Mg–Li9–Al7-Sn1 and Mg–Li9–Al5–Sn3–Zn1 alloys with remarkable corrosion protection. Appl Surf Sci 443:429–440

    Article  CAS  Google Scholar 

  18. Liu H, Szunerits S, Pisarek M et al (2009) Preparation of superhydrophobic coatings on zinc, silicon, and steel by a solution-immersion technique. ACS Appl Mater Interface 1:2086–2091

    Article  CAS  Google Scholar 

  19. Ou J, Hu W, Xue M et al (2013) One-step solution immersion process to fabricate superhydrophobic surfaces on light alloys. ACS Appl Mater Interface 5:9867–9871

    Article  CAS  Google Scholar 

  20. Singer F, Schlesak M, Mebert C et al (2015) Corrosion properties of polydopamine coatings formed in one-step immersion process on magnesium. ACS Appl Mater Interface 7:26758–26766

    Article  CAS  Google Scholar 

  21. Suchanek K, Bartkowiak A, Gdowik A, Perzanowski M, Kac S, Szaraniec B, Suchanek M, Marszalek M (2015) Crystalline hydroxyapatite coatings synthesized under hydrothermal conditions on modified titanium substrates. Mater Sci Eng C 51:57–63

    Article  CAS  Google Scholar 

  22. Peng F, Li H, Wang D et al (2016) Enhanced corrosion resistance and biocompatibility of magnesium alloy by Mg–Al–Layered double hydroxide. ACS Appl Mater Interface 8:35033–35044

    Article  CAS  Google Scholar 

  23. Ou J, Hu W, Xue M et al (2013) Superhydrophobic surfaces on light alloy substrates fabricated by a versatile process and their corrosion protection. ACS Appl Mater Interface 5:3101–3107

    Article  CAS  Google Scholar 

  24. Sahoo P, Das SK (2011) Tribology of electroless nickel coatings - A review. Mater Des 32:1760–1775

    Article  CAS  Google Scholar 

  25. Tima R, Mahboubi F (2021) Effect of plasma nitriding temperature on microstructure and wear properties of electroless nickel-boron coatings. Surf Coat Technol 415:127084

    Article  CAS  Google Scholar 

  26. Carrillo DF, Bermudez A, Gómez MA et al (2020) FFretting-corrosion behavior of electroless Ni–P/Ni–P–TiO2 coatings obtained on AZ91D magnesium alloy by a chromium-free process. Surf Interface 21:100733

    Article  CAS  Google Scholar 

  27. Zhang RF, Zhang SF (2009) Formation of micro-arc oxidation coatings on AZ91HP magnesium alloys. Corros Sci 51:2820–2825

    Article  CAS  Google Scholar 

  28. Li ZY, Cai ZB, Cui XJ et al (2021) Influence of nanoparticle additions on structure and fretting corrosion behavior of micro-arc oxidation coatings on zirconium alloy. Surf Coat Technol 410:126949

    Article  CAS  Google Scholar 

  29. Zhang K, Yu S (2020) Preparation of wear and corrosion resistant micro-arc oxidation coating on 7N01 aluminum alloy. Surf Coat Technol 388:125453

    Article  CAS  Google Scholar 

  30. Chen Z, Hao L, Chen A et al (2012) A rapid one-step process for fabrication of superhydrophobic surface by electrodeposition method. Electrochim Acta 59:168–171

    Article  CAS  Google Scholar 

  31. Awasthi S, Maurya R, Pandey CP, Balani K (2017) Interfacial mechanics of carbonaceous reinforcements in electrophoretically deposited nickel coatings. Surf Coat Technol 310:79–86

    Article  CAS  Google Scholar 

  32. Bicelli LP, Bozzini B, Mele C, D’Urzo L (2008) A review of nanostructural aspects of metal electrodeposition. Int J Electrochem Sci 3:356–408

    CAS  Google Scholar 

  33. Maharana HS, Katiyar PK, Mondal K (2019) Structure dependent super-hydrophobic and corrosion resistant behavior of electrodeposited Ni–MoSe2–MWCNT coating. Appl Surf Sci 478:26–37. https://doi.org/10.1016/j.apsusc.2019.01.166

    Article  CAS  Google Scholar 

  34. Tripathi P, Kumar P, Ramkumar J, Balani K (2020) Surface and coatings technology synergistic role of carbon nanotube and yttria stabilised zirconia reinforcement on wear and corrosion resistance of Cr-based nano-composite coatings. Surf Coat Technol 385:125381. https://doi.org/10.1016/j.surfcoat.2020.125381

    Article  CAS  Google Scholar 

  35. Lelevic A, Walsh FC (2019) Electrodeposition of Ni–P composite coatings: a review. Surf Coat Technol 378:124803

    Article  CAS  Google Scholar 

  36. He Y, Wang SC, Walsh FC et al (2015) The monitoring of coating health by in situ luminescent layers. RSC Adv 5:42965–42970. https://doi.org/10.1039/c5ra04475h

    Article  CAS  Google Scholar 

  37. He Y, Wang SC, Walsh FC et al (2016) Self-lubricating Ni–P–MoS2 composite coatings. Surf Coat Technol 307:926–934

    Article  CAS  Google Scholar 

  38. Al-Bat’hi SAM (2015) Electrodeposition of Nanostructure Materials. Electroplating of Nanostructures. InTechOpen, London, UK, pp 3–26

    Google Scholar 

  39. Chandrasekar MS, Pushpavanam M (2008) Pulse and pulse reverse plating-conceptual, advantages and applications. Electrochim Acta 53:3313–3322

    Article  CAS  Google Scholar 

  40. Raghavendra CR, Basavarajappa S, Sogalad I (2018) Electrodeposition of Ni–nano composite coatings: a review. Inorg Nanometal Chem 48:583–598

    CAS  Google Scholar 

  41. Shriram S, Mohan S, Renganathan NG (2000) Electrodeposition of nanocrystalline nickel- a brief review. Trans IMF. 78:194–197. https://doi.org/10.1080/00202967.2000.11871337

    Article  CAS  Google Scholar 

  42. Borkar T, Harimkar SP (2011) Effect of electrodeposition conditions and reinforcement content on microstructure and tribological properties of nickel composite coatings. Surf Coat Technol 205:4124–4134

    Article  CAS  Google Scholar 

  43. Agboola O, Sadiku R, Ojo OI, Olaitan A (2010) Influence of operation parameters on metal deposition in bright nickel-plating process. Port Electrochim Acta. 29:91–100. https://doi.org/10.4152/pea.201102091

    Article  CAS  Google Scholar 

  44. Riastuti R, Siallagan ST, Rifki A, Herdino F, Ramadini C (2019) The effect of saccharin addition to nickel electroplating on the formation of nanocrystalline nickel deposits. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/541/1/012053

    Article  Google Scholar 

  45. Mohammadi S (2015) Effect of surfactants on the electrodeposited nickel composite. Coatings 3:398–406

    Google Scholar 

  46. Saini A, Singh G, Mehta S et al (2022) A review on mechanical behaviour of electrodeposited Ni-composite coatings. Int J Interact Des Manuf. https://doi.org/10.1007/s12008-022-00969-z

    Article  Google Scholar 

  47. Mahidashti Z, Aliofkhazraei M, Lotfi N (2018) Review of nickel-based electrodeposited tribo-coatings. Trans Indian Inst Met 71:257–295

    Article  CAS  Google Scholar 

  48. Ünal E, Yasar A, Karahan IH (2019) A review of electrodeposited composite coatings with Ni–B alloy matrix. Mater Res Express. https://doi.org/10.1088/2053-1591/ab1811

    Article  Google Scholar 

  49. Walsh FC, Wang S, Zhou N (2020) The electrodeposition of composite coatings: diversity, applications and challenges. Curr Opin Electrochem 20:8–19

    Article  CAS  Google Scholar 

  50. Mbugua NS, Kang M, Zhang Y et al (2020) Electrochemical deposition of Ni, NiCo Alloy and NiCo-ceramic composite coatings-A critical review. Materials (Basel). https://doi.org/10.3390/ma13163475

    Article  Google Scholar 

  51. Walsh FC, Larson C (2020) Towards improved electroplating of metal-particle composite coatings. Trans Inst Met Finish 98:288–299. https://doi.org/10.1080/00202967.2020.1819022

    Article  CAS  Google Scholar 

  52. Jenczyk P, Grzywacz H, Milczarek M (2021) Mechanical and tribological properties of co-electrodeposited particulate-reinforced metal matrix composites: a critical review with interfacial aspects. Materials. 14:3181. https://doi.org/10.3390/ma14123181

    Article  CAS  Google Scholar 

  53. Fink CG, Prince JD (1928) Electrochemical co-deposition to produce self-lubricating Cu–graphite coatings. Trans Amer Electrochem Soc 54:315–320

    Google Scholar 

  54. Williams RV, Martin PW (1964) Electrodeposited composite coatings. Int J Surf Eng Coat 2967:182–188

    Google Scholar 

  55. Guglielmi N (1972) Kinetics of the deposition of inert particles from electrolytic baths. J Electrochem Sac Electrochem Sci Technol 1501:1009–1012

    Article  Google Scholar 

  56. Foster J, Kariapper AMJ (1973) Study of the mechanism of formation of electrodeposited composite coatings. Trans Inst Met Finish 51:27–31. https://doi.org/10.1080/00202967.1973.11870260

    Article  CAS  Google Scholar 

  57. Kariapper AMJ, Foster J (1974) Further studies on the mechanism of formation of electrodeposited composite coatings. Trans Inst Met Finish 52:87–91. https://doi.org/10.1080/00202967.1974.11870311

    Article  Google Scholar 

  58. Celis JP, Roos JR, Buelens C, Fransaer J (1991) Mechanism of electrolytic composite plating. Survey and trends. Trans Inst Met Finish 69:133–139

    Article  CAS  Google Scholar 

  59. Fransaer J, Celis JP, Roos JR (1992) Analysis of the electrolytic codeposition of non-brownian particles with metals. J Electrochem Soc 139:413–425. https://doi.org/10.1149/1.2069233

    Article  CAS  Google Scholar 

  60. Helle K, Walsh F (1997) Electrodeposition of composite layers consisting of inert inclusions in a metal matrix. Trans Inst Met Finish 75:53–58. https://doi.org/10.1080/00202967.1997.11871143

    Article  CAS  Google Scholar 

  61. Celis JP, Roos JR, Buelens C (1987) A mathematical model for the electrolytic codeposition of particles with a metallic matrix. J Electrochem Soc 134:1402–1408

    Article  CAS  Google Scholar 

  62. Shawki S, Hamid ZA (1997) Deposition of high wear resistance of Ni–composite coatings. Anticorros Method Mater 44:178–185. https://doi.org/10.1108/00035599710167142

    Article  CAS  Google Scholar 

  63. Vereecken PM, Shao I, Searson PC (2000) Particle codeposition in nanocomposite films. J Electrochem Soc 147:2572. https://doi.org/10.1149/1.1393570

    Article  CAS  Google Scholar 

  64. Starosta R, Zielinski A (2004) Effect of chemical composition on corrosion and wear behaviour of the composite Ni–Fe–Al2O3 coatings. J Mater Process Technol 158:434–441

    Article  Google Scholar 

  65. Szczygieł B, Kołodziej M (2005) Composite Ni/Al2O3 coatings and their corrosion resistance. Electrochim Acta 50:4188–4195

    Article  Google Scholar 

  66. Wang W, Hou FY, Wang H, Guo HT (2005) Fabrication and characterization of Ni–ZrO2 composite nano-coatings by pulse electrodeposition. Scr Mater 53:613–618

    Article  CAS  Google Scholar 

  67. Chen L, Wang L, Zeng Z, Xu T (2006) Influence of pulse frequency on the microstructure and wear resistance of electrodeposited Ni–Al2O3 composite coatings. Surf Coat Technol 201:599–605

    Article  CAS  Google Scholar 

  68. Chang LM, An MZ, Shi SY (2006) Microstructure and characterization of Ni–Co/Al2O3 composite coatings by pulse reversal electrodeposit. Mater Chem Phys 100:395–399

    Article  CAS  Google Scholar 

  69. Feng Q, Li T, Yue H, Qi K, Bai F, Jin J (2008) Preparation and characterization of nickel nano-Al2O3 composite coatings by sediment co-deposition. Appl Surf Sci 254:2262–2268

    Article  CAS  Google Scholar 

  70. Gül H, Kiliç F, Aslan S et al (2009) Characteristics of electro-co-deposited Ni–Al2O3 nano-particle reinforced metal matrix composite (MMC) coatings. Wear 267:976–990. https://doi.org/10.1016/j.wear.2008.12.022

    Article  CAS  Google Scholar 

  71. Lajevardi SA, Shahrabi T (2010) Effects of pulse electrodeposition parameters on the properties of Ni–TiO2 nanocomposite coatings. Appl Surf Sci 256:6775–6781

    Article  CAS  Google Scholar 

  72. Baghery P, Farzam M, Mousavi AB, Hosseini M (2010) Surface and coatings technology Ni–TiO2 nanocomposite coating with high resistance to corrosion and wear. Surf Coat Technol 204:3804–3810

    Article  CAS  Google Scholar 

  73. Ikram ULH, Khan TI (2011) Tribological behavior of electrodeposited Ni–SnO2 nanocomposite coatings on steel. Surf Coat Technol 205:2871–2875

    Article  Google Scholar 

  74. Tian L, Xu J (2011) Electrodeposition and characterization of Ni–Y2O3 composite. Appl Surf Sci 257:7615–7620

    Article  CAS  Google Scholar 

  75. Sen R, Das S, Das K (2011) Effect of stirring rate on the microstructure and microhardness of Ni–CeO2 nanocomposite coating and investigation of the corrosion property. Surf Coat Technol 205:3847–3855

    Article  CAS  Google Scholar 

  76. García-Lecina E, García-Urrutia I, Díez JA et al (2012) A comparative study of the effect of mechanical and ultrasound agitation on the properties of electrodeposited Ni/Al2O3 nanocomposite coatings. Surf Coat Technol 206:2998–3005

    Article  Google Scholar 

  77. Arunsunai Kumar K, Paruthimal Kalaignan G, Muralidharan VS (2013) Direct and pulse current electrodeposition of Ni–W–TiO2 nanocomposite coatings. Ceram Int 39:2827–2834

    Article  CAS  Google Scholar 

  78. Zhou X, Shen Y (2013) Beneficial effects of CeO2 addition on microstructure and corrosion behavior of electrodeposited Ni nanocrystalline coatings. Surf Coat Technol 235:433–446

    Article  CAS  Google Scholar 

  79. Kasturibai S, Kalaignan GP (2014) Characterizations of electrodeposited Ni–CeO2 nanocomposite coatings. Mater Chem Phys 147:1042–1048

    Article  CAS  Google Scholar 

  80. Wang Y, Zhou Q, Li K et al (2015) Preparation of Ni–W–SiO2 nanocomposite coating and evaluation of its hardness and corrosion resistance. Ceram Int 41:79–84

    Article  Google Scholar 

  81. Beltowska-Lehman E, Indyka P, Bigos A et al (2015) Ni–W/ZrO2 nanocomposites obtained by ultrasonic DC electrodeposition. Mater Des 80:1–11

    Article  CAS  Google Scholar 

  82. Shakoor RA, Kahraman R, Waware U et al (2014) Properties of electrodeposited Ni–B–Al2O3 composite coatings. Mater Des 64:127–135

    Article  CAS  Google Scholar 

  83. Bajwa RS, Khan Z, Bakolas V, Braun W (2016) Water-lubricated Ni-based composite (Ni–Al2O3, Ni–SiC and Ni–ZrO2) thin film coatings for industrial applications. Acta Metall Sin Engl Lett 29:8–16

    Article  CAS  Google Scholar 

  84. Góral A, Lityńska-Dobrzyńska L, Kot M (2017) Effect of surface roughness and structure features on tribological properties of electrodeposited nanocrystalline Ni and Ni/Al2O3 coatings. J Mater Eng Perform 26:2118–2128

    Article  Google Scholar 

  85. Shakoor RA, Waware US, Ali K et al (2017) Novel electrodeposited Ni–B/Y2O3 composite coatings with improved properties. Coatings 7:1–10

    Article  Google Scholar 

  86. Torabinejad V, Aliofkhazraei M, Rouhaghdam AS, Allahyarzadeh MH (2017) Tribological performance of Ni–Fe–Al2O3 multilayer coatings deposited by pulse electrodeposition. Wear 380–381:115–125

    Article  Google Scholar 

  87. Beltowska-Lehman E, Bigos A, Indyka P et al (2018) Optimisation of the electrodeposition process of Ni–W/ZrO2 nanocomposites. J Electroanal Chem 813:39–51

    Article  CAS  Google Scholar 

  88. Imanian Ghazanlou S, Farhood AHS, Ahmadiyeh S et al (2019) Characterization of pulse and direct current methods for electrodeposition of Ni–Co composite coatings reinforced with nano and micro ZnO particles. Metall Mater Trans A Phys Metall Mater Sci 50:1922–1935

    Article  CAS  Google Scholar 

  89. Li D, Li B, Du S, Zhang W (2019) Synthesis of a novel Ni–B/YSZ metal-ceramic composite coating via single-step electrodeposition at different current density. Ceram Int 45:24884–24893

    Article  CAS  Google Scholar 

  90. Liu Y, Yu SR, Liu JD et al (2011) Microstructure and wear resistance of electrodeposited Ni–SiO2 nano-composite coatings on AZ91HP magnesium alloy substrate. Trans Nonferrous Met Soc China 21:s483–s488. https://doi.org/10.1016/S1003-6326(11)61629-4

    Article  Google Scholar 

  91. Rasooli AS, Babaei MS, Farid Ansarian A (2020) Electrodeposited Ni–Fe–Cr2O3 nanocomposite coatings: a survey of influences of Cr2O3 nanoparticles loadings in the electrolyte. J Alloy Compd 822:153725

    Article  CAS  Google Scholar 

  92. Karthik R, Mani R, Manikandan P (2020) Tribological studies of Ni–SiC and Ni–Al2O3 composite coatings by pulsed electrodeposition. Mater Today Proc 37:701–706. https://doi.org/10.1016/j.matpr.2020.05.717

    Article  CAS  Google Scholar 

  93. Aslan S, Duru E (2022) Microstructure and wear properties of electrodeposited Ni–B–Al2O3 composite coating on low carbon steel at elevated temperature. J Mater Eng Perform 31:1693–1704

    Article  CAS  Google Scholar 

  94. Unveroglu B (2022) Electrodeposition and characterization of Ni–Cu alloy and submicron-sized CeO2 reinforced Ni–Cu Metal matrix composite coatings. Arab J Sci Eng. https://doi.org/10.1007/s13369-022-06783-9

    Article  Google Scholar 

  95. Garcia I, Fransaer J, Celis JP (2001) Electrodeposition and sliding wear resistance of nickel composite coatings containing micron and submicron SiC particles. Surf Coat Technol 148:171–178

    Article  CAS  Google Scholar 

  96. Socha RP, Laajalehto K, Nowak P (2002) Oxidation of the silicon carbide surface in Watts’ plating bath. Surf Interface Anal 34:413–417. https://doi.org/10.1002/sia.1329

    Article  CAS  Google Scholar 

  97. Hou KH, Ger MD, Wang LM, Ke ST (2002) The wear behaviour of electro-codeposited Ni–SiC composites. Wear 253:994–1003

    Article  CAS  Google Scholar 

  98. Surender M, Basu B, Balasubramaniam R (2004) Wear characterization of electrodeposited Ni–WC composite coatings. Tribol Int 37:743–749

    Article  CAS  Google Scholar 

  99. Shrestha NK, Kawai M, Saji T (2005) Co-deposition of B4C particles and nickel under the influence of a redox-active surfactant and anti-wear property of the coatings. Surf Coat Technol 200:2414–2419

    Article  CAS  Google Scholar 

  100. Gyftou P, Stroumbouli M, Pavlatou EA et al (2005) Tribological study of Ni matrix composite coatings containing nano and micro SiC particles. Electrochim Acta 50:4544–4550

    Article  CAS  Google Scholar 

  101. Hou KH, Hwu WH, Ke ST, Der GM (2006) Ni–P–SiC composite produced by pulse and direct current plating. Mater Chem Phys 100:54–59

    Article  CAS  Google Scholar 

  102. Zhou Y, Zhang H, Qian B (2007) Friction and wear properties of the co-deposited Ni–SiC nanocomposite coating §. Appl Surf Sci 253:8335–8339

    Article  CAS  Google Scholar 

  103. Vm R, Sadrnezhaad SK, Nikzad L (2008) Electrodeposition of Ni–SiC nano-composite coatings and evaluation of wear and corrosion resistance and electroplating characteristics. Colloid Surf A Physicochem Eng Asp 315:176–182

    Article  Google Scholar 

  104. Alexis J, Etcheverry B, Beguin JD, Bonino JP (2010) Structure, morphology and mechanical properties of electrodeposited composite coatings Ni–P/SiC. Mater Chem Phys 120:244–250. https://doi.org/10.1016/j.matchemphys.2009.12.013

    Article  CAS  Google Scholar 

  105. Mohajeri S, Dolati A, Rezagholibeiki S (2011) Electrodeposition of Ni/WC nano composite in sulfate solution. Mater Chem Phys 129:746–750

    Article  CAS  Google Scholar 

  106. Narasimman P, Pushpavanam M, Periasamy VM (2011) Synthesis, characterization and comparison of sediment electro-codeposited nickel-micro and nano SiC composites. Appl Surf Sci 258:590–598

    Article  CAS  Google Scholar 

  107. Karbasi M, Yazdian N, Vahidian A (2012) Development of electro-co-deposited Ni–TiC nano-particle reinforced nanocomposite coatings. Surf Coat Technol 207:587–593

    Article  CAS  Google Scholar 

  108. Bakhit B, Akbari A (2012) Effect of particle size and co-deposition technique on hardness and corrosion properties of Ni–Co/SiC composite coatings. Surf Coat Technol 206:4964–4975

    Article  CAS  Google Scholar 

  109. Özkan S, Hapçi G, Orhan G, Kazmanli K (2013) Electrodeposited Ni/SiC nanocomposite coatings and evaluation of wear and corrosion properties. Surf Coat Technol 232:734–741

    Article  Google Scholar 

  110. Ma C, Liang G, Zhu Y et al (2014) Preparation and corrosion assessment of electrodeposited Ni–SiC composite thin films. Ceram Int 40:3341–3346

    Article  CAS  Google Scholar 

  111. Bakhit B, Akbari A, Nasirpouri F, Hosseini MG (2014) Corrosion resistance of Ni–Co alloy and Ni–Co/SiC nanocomposite coatings electrodeposited by sediment codeposition technique. Appl Surf Sci 307:351–359

    Article  CAS  Google Scholar 

  112. Fini MH, Amadeh A (2013) Improvement of wear and corrosion resistance of AZ91 magnesium alloy by applying Ni–SiC nanocomposite coating via pulse electrodeposition. Trans Nonferrous Met Soc China 23:2914–2922

    Article  CAS  Google Scholar 

  113. Singh DK, Tripathi MK, Singh VB (2015) Electrolytic preparation of Ni–B4C composite coating and its characterization. J Mater Eng Perform 24:1213–1219

    Article  CAS  Google Scholar 

  114. Wasekar NP, Latha SM, Ramakrishna M et al (2016) Pulsed electrodeposition and mechanical properties of Ni–W/SiC nano-composite coatings. Mater Des 112:140–150

    Article  CAS  Google Scholar 

  115. Elkhoshkhany N, Hafnway A, Khaled A (2017) Electrodeposition and corrosion behavior of nano-structured Ni–WC and Ni–Co–WC composite coating. J Alloy Compd 695:1505–1514. https://doi.org/10.1016/j.jallcom.2016.10.290

    Article  CAS  Google Scholar 

  116. He T, He Y, Li H et al (2018) Fabrication of Ni–W–B4C composite coatings and evaluation of its micro-hardness and corrosion resistance properties. Ceram Int 44:9188–9193

    Article  CAS  Google Scholar 

  117. Ma C, Zhao D, Liu W et al (2020) Magnetic assisted pulse electrodeposition and characterization of Ni–TiC nanocomposites. Ceram Int 46:17631–17639. https://doi.org/10.1016/j.ceramint.2020.04.065

    Article  CAS  Google Scholar 

  118. Li B, Zhang W (2020) Facile synthesis and electrochemical properties of a novel Ni–B/TiC composite coating via ultrasonic-assisted electrodeposition. Ultrason Sonochem 61:104837

    Article  CAS  Google Scholar 

  119. Wasekar NP, Bathini L, Ramakrishna L et al (2020) Pulsed electrodeposition, mechanical properties and wear mechanism in Ni–W/SiC nanocomposite coatings used for automotive applications. Appl Surf Sci 527:146896

    Article  CAS  Google Scholar 

  120. Huang PC, Hou KH, Hong JJ et al (2021) Study of fabrication and wear properties of Ni–SiC composite coatings on A356 aluminum alloy. Wear 477:203772. https://doi.org/10.1016/j.wear.2021.203772

    Article  CAS  Google Scholar 

  121. Zhang Y, Zhang S, He Y et al (2021) Mechanical properties and corrosion resistance of pulse electrodeposited Ni–B/B4C composite coatings. Surf Coat Technol. https://doi.org/10.1016/j.surfcoat.2021.127458

    Article  Google Scholar 

  122. Zhou Y, Sun ZP, Yu Y et al (2021) Tribological behavior of Ni–SiC composite coatings produced by circulating-solution electrodeposition technique. Tribol Int 159:2–11. https://doi.org/10.1016/j.triboint.2021.106933

    Article  CAS  Google Scholar 

  123. Fayyaz O, Khan A, Shakoor RA et al (2021) Enhancement of mechanical and corrosion resistance properties of electrodeposited Ni–P–TiC composite coatings. Sci Rep 11:1–17

    Article  Google Scholar 

  124. Doğan F, Duru E, Uysal M et al (2022) Structural, mechanical, and tribological studies of Ni–B–TiN composite coating: effect of SDS concentration. J Adhes Sci Technol. https://doi.org/10.1080/01694243.2022.2060784

    Article  Google Scholar 

  125. Krishnaveni K, Narayanan TSNS, Seshadri SK (2009) Corrosion resistance of electrodeposited Ni–B and Ni–B–Si3–N4 composite coatings. J Alloy Compd 480:765–770

    Article  CAS  Google Scholar 

  126. Khazrayie MA, Aghdam ARS (2010) Si3N4/Ni nanocomposite formed by electroplating: effect of average size of nanoparticulates. Trans Nonferrous Met Soc China 20:1017–1023

    Article  CAS  Google Scholar 

  127. Mohan Reddy R, Praveen BM, Praveen Kumar CM, Venkatesha TV (2015) Pulse electrodeposition, characterization, and corrosion behavior of Ni–Si3N4 composites. J Mater Eng Perform 24:1987–1994

    Article  CAS  Google Scholar 

  128. Reddy RM, Praveen BM, Chandrappa KG, Nayana KO (2016) Generation of Ni–Si3N4 nanocomposites by DC, PC and PRC electrodeposition methods. Surf Eng 32:501–507

    Article  CAS  Google Scholar 

  129. Gyawali G, Joshi B, Tripathi K, Lee SW (2016) Preparation of Ni–W–Si3N4 composite coatings and evaluation of their scratch resistance properties. Ceram Int 42:3497–3503

    Article  CAS  Google Scholar 

  130. Zhou YR, Zhang S, Nie LL et al (2016) Electrodeposition and corrosion resistance of Ni–P–TiN composite coating on AZ91D magnesium alloy. Trans Nonferrous Met Soc China 26:2976–2987

    Article  CAS  Google Scholar 

  131. Li B, Zhang W (2018) Microstructural, surface and electrochemical properties of pulse electrodeposited Ni–W/Si3N4 nanocomposite coating. Ceram Int 44:19907–19918

    Article  CAS  Google Scholar 

  132. Hefnawy A, Elkhoshkhany N, Essam A (2018) Ni–TiN and Ni-Co-TiN composite coatings for corrosion protection: fabrication and electrochemical characterization. J Alloy Compd 735:600–606

    Article  CAS  Google Scholar 

  133. Zhang W, Li B, Ji C (2019) Synthesis and characterization of Ni–W/TiN nanocomposite coating with enhanced wear and corrosion resistance deposited by pulse electrodeposition. Ceram Int 45:14015–14028

    Article  CAS  Google Scholar 

  134. Tripathi MK, Singh VB (2019) Properties of electrodeposited functional Ni–Fe/AlN nanocomposite coatings. Arab J Chem 12:3601–3610

    Article  CAS  Google Scholar 

  135. Xia F, Li Q, Ma C, Guo X (2019) Preparation and characterization of Ni–AlN nanocoatings deposited by magnetic field assisted electrodeposition technique. Ceram Int. https://doi.org/10.1016/j.ceramint.2019.09.244

    Article  Google Scholar 

  136. Zhang W, Du S, Li B et al (2021) Synthesis and characterization of TiN nanoparticle reinforced binary Ni–Co alloy coatings. J Alloy Compd 865:158722

    Article  CAS  Google Scholar 

  137. Liu H, Wang H, Yu W et al (2021) Effect of TiN concentration on microstructure and properties of Ni/W–TiN composites obtained by pulse current electrodeposition. Ceram Int 47:24331–24339

    Article  CAS  Google Scholar 

  138. Song R, Zhang S, He Y et al (2022) Silicon nitride nanoparticles reinforced the corrosion resistance of Ni–Cu composite coating in simulated seawater solution. Colloid Surf A Physicochem Eng Asp 649:129427. https://doi.org/10.1016/j.colsurfa.2022.129427

    Article  CAS  Google Scholar 

  139. Giurlani W, Zangari G, Gambinossi F et al (2018) Electroplating for decorative applications: recent trends in research and development. Coatings 8:1–25

    Article  Google Scholar 

  140. Wang S, Ma C, Walsh FC (2020) Alternative tribological coatings to electrodeposited hard chromium: a critical review. Trans Inst Met Finish 98:173–185. https://doi.org/10.1080/00202967.2020.1776962

    Article  CAS  Google Scholar 

  141. Honey FJ, Kedward EC, Wride V (1986) The development of electrodeposits for high-temperature oxidation/corrosion resistance. J Vac Sci Technol A Vac Surf Film 4:2593–2597

    Article  CAS  Google Scholar 

  142. El-Sherik AM, Erb U (1995) Adhesion and corrosion performance of nanocrystalline Ni coatings. Plat Surf Finish 82:85–89

    CAS  Google Scholar 

  143. Safavi MS, Tanhaei M, Ahmadipour MF et al (2020) Electrodeposited Ni–Co alloy-particle composite coatings: a comprehensive review. Surf Coat Technol 382:125153. https://doi.org/10.1016/j.surfcoat.2019.125153

    Article  CAS  Google Scholar 

  144. Walsh FC (2001) FC walsh 2001 EC tech for environmental treatment and clean energy conversion. Pure Appl Chem 73:1819–1837

    Article  CAS  Google Scholar 

  145. Walsh FC, Reade GW (1994) Electrochemical techniques for the treatment of dilute metal–ion solutions. Stud Environ Sci 59:3–44. https://doi.org/10.1016/S0166-1116(08)70546-6

    Article  CAS  Google Scholar 

  146. Dabrowski A, Hubicki Z, Podkościelny P, Robens E (2004) Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 56:91–106. https://doi.org/10.1016/j.chemosphere.2004.03.006

    Article  CAS  Google Scholar 

  147. Benvenuti T, Krapf RS, Rodrigues MAS et al (2014) Recovery of nickel and water from nickel electroplating wastewater by electrodialysis. Sep Purif Technol 129:106–112. https://doi.org/10.1016/j.seppur.2014.04.002

    Article  CAS  Google Scholar 

  148. Oriňáková R, Turoňová A, Kladeková D et al (2006) Recent developments in the electrodeposition of nickel and some nickel-based alloys. J Appl Electrochem 36:957–972

    Article  Google Scholar 

  149. Popov BN, Yin K, White RE (1993) Galvanostatic pulse and pulse reverse plating of nickel–iron alloys from electrolytes containing organic compounds on a rotating disk electrode. J Electrochem Soc 140:1321–1330

    Article  CAS  Google Scholar 

  150. Hu C-C, Bai A (2002) The inhibition of anomalous codeposition of iron–group alloys using cyclic voltammetry. J Electrochem Soc 149:C615

    Article  CAS  Google Scholar 

  151. Yeh YM, Chen CS, Tsai MH et al (2005) Effect of pulse-reverse current on microstructure and properties of electroformed nickel–iron mold insert. Jpn J Appl Phys Part 1 Regul Pap Short Note Rev Pap 44:1086–1090

    Article  CAS  Google Scholar 

  152. Low CTJ, Wills RGA, Walsh FC (2006) Electrodeposition of composite coatings containing nanoparticles in a metal deposit. Surf Coat Technol 201:371–383

    Article  CAS  Google Scholar 

  153. Low CTJ, Walsh FC (2015) Multifunctional nanostructured metallic coatings by electrodeposition. Multifunctional materials for tribological applications. Jenny Stanford Publishing, Redwood City California, pp 227–258

    Google Scholar 

  154. Berçot P, Pea-Muoz E, Pagetti J (2002) Electrolytic composite Ni–PTFE coatings: an adaptation of Guglielmi’s model for the phenomena of incorporation. Surf Coat Technol 157:282–289

    Article  Google Scholar 

  155. Bahadormanesh B, Dolati A (2010) The kinetics of Ni–Co/SiC composite coatings electrodeposition. J Alloy Compd 504:514–518

    Article  CAS  Google Scholar 

  156. Walsh FC, Ponce De Leon C (2014) A review of the electrodeposition of metal matrix composite coatings by inclusion of particles in a metal layer: an established and diversifying technology. Trans Inst Met Finish 92:83–98

    Article  CAS  Google Scholar 

  157. Saha RK, Khan TI (2010) Effect of applied current on the electrodeposited Ni–Al2O3 composite coatings. Surf Coat Technol 205:890–895

    Article  CAS  Google Scholar 

  158. Mamaghani KR, Naghib SM (2017) The effect of stirring rate on electrodeposition of nanocrystalline nickel coatings and their corrosion behaviors and mechanical characteristics. Int J Electrochem Sci 12:5023–5035

    Article  CAS  Google Scholar 

  159. Lee CC, Wan CC (1988) A study of the composite electrodeposition of copper with alumina powder. J Electrochem Soc Electrochem Sci Technol 135:1930–1933

    Article  CAS  Google Scholar 

  160. Zhou N, Wang S, Walsh FC (2018) Effective particle dispersion via high-shear mixing of the electrolyte for electroplating a nickel-molybdenum disulphide composite. Electrochim Acta 283:568–577. https://doi.org/10.1016/j.electacta.2018.06.187

    Article  CAS  Google Scholar 

  161. Heakal FET, Maanoum MA (2016) Role of some plating parameters in the properties of Ni–P/Al2O3 nanocomposite coatings on Mg alloy. Int J Electrochem Sci 11:7198–7215

    Article  CAS  Google Scholar 

  162. Meguro K, Ushida T, Hiraoka T, Esumi K (1987) Effects of surfactants and surface treatment on aqueous dispersio of silicon carbide. Bull Chem Soc Jpn 60:89–94

    Article  CAS  Google Scholar 

  163. Guo C, Zuo Y, Zhao X et al (2008) Effects of surfactants on electrodeposition of nickel-carbon nanotubes composite coatings. Surf Coat Technol 202:3385–3390

    Article  CAS  Google Scholar 

  164. Sautter FK (1962) Electrodeposition of dispersion-hardened nickei–AI2O3 alloys. J Electrochem Soc 110:557–560

    Article  Google Scholar 

  165. Bapu GNKR, Mohammed M (1993) Electrodeposition of nickel-vanadium corrosion behaviour and its oxidation behaviour. Mater Chem Phys 36:134–138

    Article  CAS  Google Scholar 

  166. Nayand R, Chattopadhyay S (1982) Electrodeposited Cr–Al2O3 composite coatings. Surf Technol 16:227–234

    Article  Google Scholar 

  167. Narayan R, Narayana BH (1981) Electrodeposited chromium-graphite composite coatings. J Electrochem Soc Electrochem Sci Technol. https://doi.org/10.1149/1.2127714

    Article  Google Scholar 

  168. Bazzard R, Boden PJ (1972) Nickel–chromium alloys by codeposition: part I – codeposition of chromium particles in a nickel matrix. Trans Inst Met Finish 50:36–69

    Google Scholar 

  169. Verelst M, Bonino JP, Rousset A (1991) Electroforming of metal matrix composite: dispersoid grain size dependence of thermostructural and mechanical properties. Mater Sci Eng A 135:51–57

    Article  Google Scholar 

  170. Yin M (1998) A theoretical analysis of the effect of inert blocking agent on the galvanostatic pulse plating. J Electrochm Soc 145:3851–3856

    Article  CAS  Google Scholar 

  171. Narasimman P, Pushpavanam M, Periasamy VM (2011) Effect of surfactants on the electrodeposition of Ni–SiC composites. Port Electrochim Acta 30:1–14

    Article  Google Scholar 

  172. Zoikis-Karathanasis A, Pavlatou EA, Spyrellis N (2010) Pulse electrodeposition of Ni–P matrix composite coatings reinforced by SiC particles. J Alloy Compd 494:396–403

    Article  CAS  Google Scholar 

  173. Ahmadkhaniha D, Zanella C (2019) The effects of additives, particles load and current density on codeposition of SiC particles in NiP nanocomposite coatings. Coatings. https://doi.org/10.3390/coatings9090554

    Article  Google Scholar 

  174. Hovestad A, Janssen LJJ (1995) Electrochemical codeposition of inert particles in a metallic matrix. J Appl Electrochem 25:519–527

    Article  CAS  Google Scholar 

  175. Socha RP, Laajalehto K, Nowak P (2002) Influence of the surface properties of silicon carbide on the process of SiC particles codeposition with nickel. Colloid Surf A Physicochem Eng Asp 208:267–275

    Article  CAS  Google Scholar 

  176. Alexandridou S, Kiparissides C, Fransaer J, Celis JP (1995) On the synthesis of oil-containing microcapsules and their electrolytic codeposition. Surf Coat Technol 71:267–276

    Article  CAS  Google Scholar 

  177. Roos JR, Celis JP, Fransaer J, Buelens C (1990) The development of composite plating for advanced materials. Jom 42:60–63

    Article  CAS  Google Scholar 

  178. Ramesh CS, Seshadri SK (2003) Tribological characteristics of nickel based composite coatings. Wear 255:893–902

    Article  CAS  Google Scholar 

  179. Curie M (1995) Electrodeposition of nickel/silicon carbide composite coatings on a rotating disc electrode. J Appl Electrochem 25:1113–1121

    Google Scholar 

  180. Qu NS, Chan KC, Zhu D (2004) Pulse co-electrodeposition of nano Al2O3 whiskers nickel composite coating. Scr Mater 50:1131–1134

    Article  CAS  Google Scholar 

  181. Yuan XT, Sun DB, Yu HY, Wang Y (2009) Effect of nano–SiC particles on the corrosion resistance of NiP–SiC composite coatings. Int J Miner Metall Mater 16:444–451

    Article  CAS  Google Scholar 

  182. Abdel Hamid Z, Ghayad IM (2002) Characteristics of electrodeposition of Ni-polyethylene composite coatings. Mater Lett 53:238–243

    Article  CAS  Google Scholar 

  183. Susan DF, Barmak K, Marder AR (1997) Electrodeposited Ni–Al particle composite coatings. Thin Solid Film 307:133–140

    Article  CAS  Google Scholar 

  184. Robin A, Fratari RQ (2007) Deposition and characterization of nickel-niobium composite electrocoatings. J Appl Electrochem 37:805–812

    Article  CAS  Google Scholar 

  185. Gyawali G, Tripathi K, Joshi B, Lee SW (2017) Mechanical and tribological properties of Ni–W–TiB2 composite coatings. J Alloy Compd 721:757–763

    Article  CAS  Google Scholar 

  186. Jarząbek DM (2018) The impact of weak interfacial bonding strength on mechanical properties of metal matrix – ceramic reinforced composites. Compos Struct 201:352–362. https://doi.org/10.1016/j.compstruct.2018.06.071

    Article  Google Scholar 

  187. Jarząbek DM, Dziekoński C, Dera W et al (2018) Influence of Cu coating of SiC particles on mechanical properties of Ni/SiC co-electrodeposited composites. Ceram Int 44:21750–21758. https://doi.org/10.1016/j.ceramint.2018.08.271

    Article  CAS  Google Scholar 

  188. Jagadeesh GV, Gangi Setti S (2020) A review on micromechanical methods for evaluation of mechanical behavior of particulate reinforced metal matrix composites. J Mater Sci 55:9848–9882. https://doi.org/10.1007/s10853-020-04715-2

    Article  CAS  Google Scholar 

  189. Archard JF (1953) Contact and rubbing of flat surfaces. J Appl Phys 24:981–988

    Article  Google Scholar 

  190. Wang L, Gao Y, Xue Q et al (2005) Effects of nano-diamond particles on the structure and tribological property of Ni-matrix nanocomposite coatings. Mater Sci Eng A 390:313–318

    Article  Google Scholar 

  191. Wang L, Chen M, Liu H et al (2017) Optimisation of microstructure and corrosion resistance of Ni–Ti composite coatings by the addition of CeO2 nanoparticles. Surf Coat Technol 331:196–205

    Article  CAS  Google Scholar 

  192. Anwar S, Khan F, Zhang Y (2020) Corrosion behaviour of Zn–Ni alloy and Zn–Ni–nano–TiO2 composite coatings electrodeposited from ammonium citrate baths. Process Saf Environ Prot 141:366–379

    Article  CAS  Google Scholar 

  193. Kear G, Barker BD, Stokes K, Walsh FC (2004) Flow influenced electrochemical corrosion of nickel aluminium bronze - part I. Cathodic polarisation. J Appl Electrochem 34:1235–1240. https://doi.org/10.1007/s10800-004-1758-1

    Article  CAS  Google Scholar 

  194. El-Lateef HMA, El-Sayed AR, Mohran HS (2015) Role of nickel alloying on anodic dissolution behavior of zinc in 3.5% NaCl solution. Part II: potentiodynamic, potentiostatic and galvanostatic studies. Trans Nonferrous Met Soc China 25:3152–3164. https://doi.org/10.1016/S1003-6326(15)63946-2

    Article  CAS  Google Scholar 

  195. Garcia I (2003) Improved corrosion resistance through microstructural modifications induced by codepositing SiC-particles with electrolytic nickel. Corros Sci 45:1173–1189

    Article  CAS  Google Scholar 

  196. Lampke T, Leopold A, Dietrich D et al (2006) Correlation between structure and corrosion behaviour of nickel dispersion coatings containing ceramic particles of different sizes. Surf Coat Technol 201:3510–3517. https://doi.org/10.1016/j.surfcoat.2006.08.073

    Article  CAS  Google Scholar 

  197. Ghosh SK, Dey GK, Dusane RO, Grover AK (2006) Improved pitting corrosion behaviour of electrodeposited nanocrystalline Ni-Cu alloys in 3.0 wt.% NaCl solution. J Alloy Compd 426:235–243. https://doi.org/10.1016/j.jallcom.2005.12.094

    Article  CAS  Google Scholar 

  198. SZKLARSKA-SMIAL0WSKA RBI and Z (1993) PITTING CORROSION ALLOY OF SPUTTERED Composition and structure of Fe base alloy films AES results indicated that the composition of the sputtered Fe alloy films was uniform across the film thickness . The typical AES depth profile of the Fe-19 at % W allo. 34:

  199. Wu Z, Liu L, Shen B et al (2012) Effect of α-Al 2O3 coatings on the mechanical properties of Ni/SiC composites prepared by electrodeposition. Mater Sci Eng A 556:767–774

    Article  CAS  Google Scholar 

  200. Cardinal MF, Castro PA, Baxi J et al (2009) Characterization and frictional behavior of nanostructured Ni–W–MoS2 composite coatings. Surf Coat Technol 204:85–90

    Article  CAS  Google Scholar 

  201. Lekka M, Zanella C, Klorikowska A, Bonora PL (2010) Scaling-up of the electrodeposition process of nano-composite coating for corrosion and wear protection. Electrochim Acta 55:7876–7883. https://doi.org/10.1016/j.electacta.2010.02.081

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support as Junior Research Fellowship (JRF) by the Ministry of Education, Government of India is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Maurya.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare. All co-authors have seen and agree with the contents of the manuscript and there is no financial interest to report.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priyadarshi, P., Katiyar, P.K. & Maurya, R. A review on mechanical, tribological and electrochemical performance of ceramic particle-reinforced Ni-based electrodeposited composite coatings. J Mater Sci 57, 19179–19211 (2022). https://doi.org/10.1007/s10853-022-07809-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07809-1

Navigation