Skip to main content
Log in

Deposition and characterization of nickel–niobium composite electrocoatings

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Ni–Nb composite electrocoatings were obtained on carbon steel from Watts bath, containing suspended 20 μm size niobium powders. The effect of cathodic current density, electrolyte stirring rate and concentration of Nb particles in the bath on the deposit morphology and texture, volume fraction of co-deposited Nb particles and microhardness was investigated. The Ni–Nb composite layers presented a rough morphology with randomly oriented Ni grains, whereas pure Ni coatings obtained under the same experimental conditions were smooth and showed highly preferred orientation in the [110] or [100] direction. Stirring rate of the electrolyte and concentration of Nb particles in the bath are the main parameters affecting the incorporation of Nb particles. The Nb incorporated volume fraction was 11–14%, 17–19%, 27–32% and 34–37% for the 20 g L−1 Nb/550 rpm, 20 g L−1 Nb/400 rpm, 40 g L−1 Nb/400 rpm and 40 g L−1 Nb/550 rpm conditions, respectively. The microhardness of the Ni–Nb composite coatings obtained at 20 and 40 mA cm−2 was higher than that of pure Ni layers, due to grain refining. Incorporation of Nb particles in Ni coatings improved the corrosion resistance of the deposits in NaCl and H2SO4 solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kim SK, Yoo HJ (1998) Surf Coat Technol 108–109:564

    Article  CAS  Google Scholar 

  2. Garcia I, Fransaer J, Celis JP (2001) Surf Coat Technol 148:171

    Article  CAS  Google Scholar 

  3. Medeliene V (2002) Surf Coat Technol 154:104

    Article  CAS  Google Scholar 

  4. Zimmerman AF, Clark DG, Aust KT, Erb U (2002) Mater Lett 52:85

    Article  CAS  Google Scholar 

  5. Hou KH, Ger MD, Wang LM, Ke ST (2002) Wear 253:1003

    Google Scholar 

  6. Socha RP, Laajalehto K, Nowak P (2002) Colloids Surf A 208:267

    Article  CAS  Google Scholar 

  7. Wang SC, Wei WCJ (2003) Mater Chem Phys 78:574

    Article  CAS  Google Scholar 

  8. Steinbach J, Ferkel H (2001) Script Mater 44:1813

    Article  CAS  Google Scholar 

  9. Zhou M, Tacconi NR, Rajeshwar K (1997) J Electroanal Chem 421:111

    Article  CAS  Google Scholar 

  10. Abdel Hamid Z, Ghayad IM (2002) Mater Lett 53:238

    Article  CAS  Google Scholar 

  11. Berçot P, Peña-Muñoz E, Pagetti J (2002) Surf Coat Technol 157:282

    Article  Google Scholar 

  12. Serek A, Budniok A (2002) Curr Appl Phys 2:193

    Article  Google Scholar 

  13. Panek J, Serek A, Budniok A, Rówinski E, Lagiewka E (2003) Int J Hydrogen Energy 28:169

    Article  CAS  Google Scholar 

  14. Susan DF, Barmak K, Marder AR (1997) Thin Solid Films 307:133

    Article  CAS  Google Scholar 

  15. He L, Liu H, Chen D, Chen Z, Bai X (2002) Surf Coat Technol 160:109

    Article  CAS  Google Scholar 

  16. Lee WH, Tang SC, Chung KC (1999) Surf Coat Technol 120–121:607

    Article  Google Scholar 

  17. Hovestad A, Janssen LJJ (1995) J Appl Electrochem 25:519

    Article  CAS  Google Scholar 

  18. ASM Handbook (1993) Corrosion, vol 13. ASM International, Materials Park

    Google Scholar 

  19. ASM Handbook (1994) Surface engineering, vol 5. ASM International, Materials Park

    Google Scholar 

  20. Sandim HRZ (1996) Preparation of Nb-TiO2 alloys by powder metallurgy and its microstructural characterization. PhD Thesis, Universidade de São Paulo

  21. Losiewicz B, Budniok A, Rówinski E, Lagiewka E, Lasia A (2004) J Appl Electrochem 34:507

    Article  CAS  Google Scholar 

  22. Selected Powder Diffraction Data-Metals and Alloys-Data Book (1978) JCPDS International Centre for Diffraction Data, Swarthmore

  23. Dini JW (1993) Electrodeposition: the materials science of coatings and substrates. Noyes Publications, Park Ridge

    Google Scholar 

  24. Stroumbouli M, Gyftou P, Pavlatou EA, Spyrellis N (2005) Surf Coat Technol 195:325

    Article  CAS  Google Scholar 

  25. Annual Book of ASTM Standards (1992) Volume 02.05, ASTM International

  26. Wang H, Yao S, Matsumara S (2004) J Mater Proc Technol 145:299

    Article  CAS  Google Scholar 

  27. Safranek WH (1974) The properties of electrodeposited metals and alloys. Elsevier, New York

    Google Scholar 

  28. Ramesh CS, Seshadri SK (2003) Wear 255:893

    Article  CAS  Google Scholar 

  29. Ferkel H, Müller B, Riehemann W (1997) Mater Sci Eng A 234–236:474

    Google Scholar 

  30. Rethinam AJ, Ramesh Bapu GNK, Krishnan RM (2004) Mater Chem Phys 85:251

    Article  CAS  Google Scholar 

  31. Garcia I, Conde A, Langelaan G, Fransaer J, Celis JP (2003) Corr Sci 45:1173

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. Dr. H.R.Z. Sandim (EEL-USP) for supplying the niobium powders and R.Q.F. acknowledges CNPq (Conselho Nacional de Desenvolvimento e Pesquisa – Brazil) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Robin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robin, A., Fratari, R.Q. Deposition and characterization of nickel–niobium composite electrocoatings. J Appl Electrochem 37, 805–812 (2007). https://doi.org/10.1007/s10800-007-9315-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-007-9315-3

Keywords

Navigation