Skip to main content

Advertisement

Log in

Dynamically vulcanized polylactic acid/natural rubber/waste rubber blends: effect of the rubber content

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The reduction in the production of conventional polymers based on crude oil by using bio-based plastics and by valorizing rubber wastes is an essential route to reverse the negative impact of the polymer industry on the environment. To contribute to this challenge, we prepared polylactic acid (PLA)/natural rubber (NR)/ground tyre rubber (GTR) blends via dynamic vulcanization. The PLA/NR/GTR blends with a rubber content and above 30 wt% show a continuous rubber phase (NR/GTR) where the GTR particles are encapsulated into the NR matrix as shown by dissolution experiment in dichloromethane and microscopy images on etched samples. PLA/NR/GTR blends with 30 wt% of rubber show a tensile modulus of 1.3 GPa, a tensile toughness of 8.3 MJ m−3 and an impact strength of 260 kJ m−2 higher than 1.1 GPa, 4.2 MJ m−3 and 160 kJ m−2, respectively, for the binary PLA/NR blend. The presence of reinforcing carbon black particles in the GTR as well as their partially vulcanized state of the GTR before dynamic vulcanization may result in a higher cross-linking level of the rubber phase in the ternary blends as compared to binary blends that likely contribute to concomitantly improve tensile modulus, toughness and impact tensile strength.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. European Commission (2018) A European strategy for plastics in a circular economy

  2. Mekonnen T, Mussone P, Khalil H, Bressler D (2013) Progress in bio-based plastics and plasticizing modifications. J Mater Chem A 1(43):13379–13398. https://doi.org/10.1039/C3TA12555F

    Article  CAS  Google Scholar 

  3. Spierling S et al (2018) Bio-based plastics–A review of environmental, social and economic impact assessments. J Clean Prod 185:476–491. https://doi.org/10.1016/j.jclepro.2018.03.014

    Article  Google Scholar 

  4. Iwata T (2015) Biodegradable and bio-based polymers: future prospects of eco-friendly plastics. Angew Chem Int Ed 54(11):3210–3215. https://doi.org/10.1002/anie.201410770

    Article  CAS  Google Scholar 

  5. Wool R, Sun XS (2011) Bio-based polymers and composites. Elsevier

    Google Scholar 

  6. Carrasco F, Pagès P, Gámez-Pérez J, Santana OO, Maspoch ML (2010) Processing of poly(lactic acid): characterization of chemical structure, thermal stability and mechanical properties. Polym Degrad Stab 95(2):116–125. https://doi.org/10.1016/j.polymdegradstab.2009.11.045

    Article  CAS  Google Scholar 

  7. Cailloux J et al (2019) Melt-processing of cellulose nanofibril/polylactide bionanocomposites via a sustainable polyethylene glycol-based carrier system. Carbohydr Polym 224:115188. https://doi.org/10.1016/j.carbpol.2019.115188

    Article  CAS  Google Scholar 

  8. Oguz O et al (2021) Poly(lactide)/cellulose nanocrystal nanocomposites by high-shear mixing. Polym Eng Sci 61(4):1028–1040. https://doi.org/10.1002/pen.25621

    Article  CAS  Google Scholar 

  9. Oguz O, Candau N, Citak MK, Cetin FN, Avaz Seven S, Menceloglu YZ (2019) A sustainable approach to produce stiff, super-tough, and heat-resistant poly(lactic acid)-based green materials. ACS Sustain Chem Eng 7(8):7869–7877. https://doi.org/10.1021/acssuschemeng.9b00319

    Article  CAS  Google Scholar 

  10. Harada M, Iida K, Okamoto K, Hayashi H, Hirano K (2008) Reactive compatibilization of biodegradable poly(lactic acid)/poly(ε-caprolactone) blends with reactive processing agents. Polym Eng Sci 48(7):1359–1368. https://doi.org/10.1002/pen.21088

    Article  CAS  Google Scholar 

  11. Feng Y, Hu Y, Yin J, Zhao G, Jiang W (2013) High impact poly(lactic acid)/poly(ethylene octene) blends prepared by reactive blending. Polym Eng Sci 53(2):389–396. https://doi.org/10.1002/pen.23265

    Article  CAS  Google Scholar 

  12. Nagarajan V, Mohanty AK, Misra M (2016) Perspective on polylactic acid (pla) based sustainable materials for durable applications: focus on toughness and heat resistance. ACS Sustain Chem Eng 4(6):2899–2916. https://doi.org/10.1021/acssuschemeng.6b00321

    Article  CAS  Google Scholar 

  13. Wang R, Wang S, Zhang Y, Wan C, Ma P (2009) Toughening modification of PLLA/PBS blends via in situ compatibilization. Polym Eng Sci 49(1):26–33. https://doi.org/10.1002/pen.21210

    Article  CAS  Google Scholar 

  14. Ma P, Hristova-Bogaerds DG, Goossens JGP, Spoelstra AB, Zhang Y, Lemstra PJ (2012) Toughening of poly(lactic acid) by ethylene-co-vinyl acetate copolymer with different vinyl acetate contents. Eur Polym J 48(1):146–154. https://doi.org/10.1016/j.eurpolymj.2011.10.015

    Article  CAS  Google Scholar 

  15. Cailloux J et al (2018) Effect of the viscosity ratio on the PLA/PA10.10 bioblends morphology and mechanical properties. Express Polym Lett 12(6):569–582. https://doi.org/10.3144/expresspolymlett.2018.47

    Article  CAS  Google Scholar 

  16. Phattarateera S, Pattamaprom C (2020) The effect of polylactic acid (PLA)/poly-d-lactide stereocomplex on the thermal and mechanical properties of various PLA/rubber blends. Polym Int 69(1):41–49. https://doi.org/10.1002/pi.5916

    Article  CAS  Google Scholar 

  17. Zhang L, Hua J, Wang Z (2018) Dynamically vulcanized polylactide/nitrile butadiene rubber blends with continuous cross-linked rubber phase. J Polym Res 26(1):11. https://doi.org/10.1007/s10965-018-1669-1

    Article  CAS  Google Scholar 

  18. Maroufkhani M, Katbab A, Bizhani H, Zhang J (2021) Toward morphology development and impact strength of Co-continuous supertough dynamically vulcanized rubber toughened PLA blends: effect of sulfur content. Polymer 217:123439. https://doi.org/10.1016/j.polymer.2021.123439

    Article  CAS  Google Scholar 

  19. Chen Y, Yuan D, Xu C (2014) Dynamically vulcanized biobased polylactide/natural rubber blend material with continuous cross-linked rubber phase. ACS Appl Mater Interfaces 6(6):3811–3816. https://doi.org/10.1021/am5004766

    Article  CAS  Google Scholar 

  20. Bitinis N, Verdejo R, Cassagnau P, Lopez-Manchado MA (2011) Structure and properties of polylactide/natural rubber blends. Mater Chem Phys 129(3):823–831. https://doi.org/10.1016/jmatchemphys.2011.05.016

    Article  CAS  Google Scholar 

  21. Klinkajorn J, Tanrattanakul V (2020) The effect of epoxide content on compatibility of poly(lactic acid)/epoxidized natural rubber blends. J Appl Polym Sci 137(34):48996. https://doi.org/10.1002/app.48996

    Article  CAS  Google Scholar 

  22. Boonmahitthisud A, Mongkolvai A, Chuayjuljit S (2021) Toughness improvement in bio-based poly(lactic acid)/epoxidized natural rubber blend reinforced with nanosized silica. J Polym Environ. https://doi.org/10.1007/s10924-021-02063-z

    Article  Google Scholar 

  23. Inkinen S, Hakkarainen M, Albertsson A-C, Södergård A (2011) From lactic acid to poly(lactic acid) (PLA): characterization and analysis of PLA and its precursors. Biomacromol 12(3):523–532. https://doi.org/10.1021/bm101302t

    Article  CAS  Google Scholar 

  24. Ikeda Y, Kato A, Kohjiya S, Nakajima Y (2017) Rubber science: A modern approach, Springer, Singapore, p 220 doi https://doi.org/10.1007/978-981-10-2938-7

  25. Chen Y, Yuan D, Xu C (2014) Dynamically vulcanized biobased polylactide/natural rubber blend material with continuous cross-linked rubber phase. ACS Appl Mater Interfaces. https://doi.org/10.1021/am5004766

    Article  Google Scholar 

  26. Yuan D, Chen K, Xu C, Chen Z, Chen Y (2014) Crosslinked bicontinuous biobased PLA/NR blends via dynamic vulcanization using different curing systems. Carbohydr Polym 113:438–445. https://doi.org/10.1016/j.carbpol.2014.07.044

    Article  CAS  Google Scholar 

  27. Rabiei S, Shojaei A (2016) Vulcanization kinetics and reversion behavior of natural rubber/styrene-butadiene rubber blend filled with nanodiamond—the role of sulfur curing system. Eur Polym J 81:98–113. https://doi.org/10.1016/j.eurpolymj.2016.05.021

    Article  CAS  Google Scholar 

  28. Leroy E, Souid A, Deterre R (2013) A continuous kinetic model of rubber vulcanization predicting induction and reversion. Polym Test 32(3):575–582. https://doi.org/10.1016/j.polymertesting.2013.01.003

    Article  CAS  Google Scholar 

  29. Rios-Soberanis CR, Wakayama S, Sakai T, de Rodriguez-Laviada JLÁ, Pérez-Pacheco E (2013) Manufacture of Partially Biodegradable Composite Materials Based on PLA-Tires Powder: Process and Characterization. International Journal of Polymer Science 2013:1–8

    Article  Google Scholar 

  30. Sakai T, Morikiyo T, Rios-Soberanis CR, Yoneyama S, Wakayama S (2013) Effect of crushing method of wasted tire on mechanical behavior on PLA Composites. In: Challenges in mechanics of time-dependent materials and processes in conventional and multifunctional materials. Springer, New York, pp 85–91. https://doi.org/10.1007/978-1-4614-4241-7_13

  31. Oliveira M, Santos E, Araújo A, Fechine GJM, Machado AV, Botelho G (2016) The role of shear and stabilizer on PLA degradation. Polym Test 51:109–116. https://doi.org/10.1016/j.polymertesting.2016.03.005

    Article  CAS  Google Scholar 

  32. Yang J, Nie S, Zhu J (2016) A comparative study on different rubbery modifiers: Effect on morphologies, mechanical, and thermal properties of PLA blends. J Appl Polym Sci. https://doi.org/10.1002/app.43340

    Article  Google Scholar 

  33. Yang J, Nie S-B, Ding G-X, Wang Z-F, Gao J-S, Zhu J-B (2015) Mechanical properties, morphologies and thermal decomposition kinetics of poly(lactic acid) toughened by waste rubber powder. Int Polym Process 30:467–475. https://doi.org/10.3139/217.3049

    Article  CAS  Google Scholar 

  34. Candau N, Oguz O, León Albiter N, Förster G, Maspoch ML (2021) Poly (lactic acid)/ground tire rubber blends using peroxide vulcanization. Polymers. https://doi.org/10.3390/polym13091496

    Article  Google Scholar 

  35. Al-Malaika S, Amir EJ (1989) Thermoplastic elastomers: part III—Ageing and mechanical properties of natural rubber-reclaimed rubber/polypropylene systems and their role as solid phase dispersants in polypropylene/polyethylene blends. Polym Degrad Stab 26(1):31–41. https://doi.org/10.1016/0141-3910(89)90026-8

    Article  CAS  Google Scholar 

  36. Lima P, Oliveira J, Costa V (2014) Partial replacement of EPDM by GTR in thermoplastic elastomers based on PP/EPDM: effects on morphology and mechanical properties, J. Polym. Sci, Appl. https://doi.org/10.1002/app.40160

    Book  Google Scholar 

  37. Lima PS, Oliveira JM, Costa VAF (2015) Partial replacement of EPR by GTR in highly flowable PP/EPR blends: effects on morphology and mechanical properties. J Appl Polym Sci. https://doi.org/10.1002/app.42011

    Article  Google Scholar 

  38. Kumar CR, Fuhrmann I, Karger-Kocsis J (2002) LDPE-based thermoplastic elastomers containing ground tire rubber with and without dynamic curing. Polym Degrad Stab 76(1):137–144. https://doi.org/10.1016/S0141-3910(02)00007-1

    Article  CAS  Google Scholar 

  39. Naskar AK, Bhowmick AK, De SK (2001) Thermoplastic elastomeric composition based on ground rubber tire. Polym Eng Sci 41(6):1087–1098. https://doi.org/10.1002/pen.10809

    Article  CAS  Google Scholar 

  40. Grigoryeva OP, Fainleib AM, Tolstov AL, Starostenko OM, Lievana E, Karger-Kocsis J (2005) Thermoplastic elastomers based on recycled high-density polyethylene, ethylene–propylene–diene monomer rubber, and ground tire rubber. J Appl Polym Sci 95(3):659–671. https://doi.org/10.1002/app.21177

    Article  CAS  Google Scholar 

  41. Wang L, Lang F, Li S, Du F, Wang Z (2014) Thermoplastic elastomers based on high-density polyethylene and waste ground rubber tire composites compatibilized by styrene–butadiene block copolymer. J Thermoplast Compos Mater 27(11):1479–1492. https://doi.org/10.1177/0892705712473628

    Article  CAS  Google Scholar 

  42. Fazli A, Rodrigue D (2020) Waste rubber recycling: a review on the evolution and properties of thermoplastic elastomers. Materials. https://doi.org/10.3390/ma13030782

    Article  Google Scholar 

  43. Candau N et al (2020) Effect of the strain rate on damage in filled EPDM during single and cyclic loadings. Polymers. https://doi.org/10.3390/polym12123021

    Article  Google Scholar 

  44. Candau N, Oguz O, Peuvrel-Disdier E, Bouvard J-L, Pradille C, Billon N (2020) Strain and filler ratio transitions from chains network to filler network damage in EPDM during single and cyclic loadings. Polymer 197:122435. https://doi.org/10.1016/j.polymer.2020.122435

    Article  CAS  Google Scholar 

  45. Candau N et al (2020) Heat source and voiding signatures of Mullins damage in filled EPDM. Polym Test 91:106838. https://doi.org/10.1016/j.polymertesting.2020.106838

    Article  CAS  Google Scholar 

  46. Candau N, Oguz O, Federico CE, Stoclet G, Tahon J-F, Maspoch ML (2021) Strain induced crystallization in vulcanized natural rubber containing ground tire rubber particles with reinforcement and nucleation abilities. Polym Test 101:107313. https://doi.org/10.1016/j.polymertesting.2021.107313

    Article  CAS  Google Scholar 

  47. Candau N, Vives E, Fernández AI, Maspoch ML (2021) Elastocaloric effect in vulcanized natural rubber and natural/wastes rubber blends. Polymer 236:124309. https://doi.org/10.1016/j.polymer.2021.124309

    Article  CAS  Google Scholar 

  48. Kong Y, Hay JN (2003) The enthalpy of fusion and degree of crystallinity of polymers as measured by DSC. Eur Polym J 39(8):1721–1727. https://doi.org/10.1016/S0014-3057(03)00054-5

    Article  CAS  Google Scholar 

  49. Schick C (2009) Differential scanning calorimetry (DSC) of semicrystalline polymers. Anal Bioanal Chem 395(6):1589. https://doi.org/10.1007/s00216-009-3169-y

    Article  CAS  Google Scholar 

  50. Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9(2):63–84. https://doi.org/10.1023/A:1020200822435

    Article  CAS  Google Scholar 

  51. Talbamrung T, Kasemsook C, Sangtean W, Wachirahuttapong S, Thongpin C (2016) Effect of peroxide and organoclay on thermal and mechanical properties of PLA in PLA/NBR melted blend. Energy Procedia 89:274–281. https://doi.org/10.1016/j.egypro.2016.05.035

    Article  CAS  Google Scholar 

  52. Chenal JM, Chazeau L, Bomal Y, Gauthier C (2007) New insights into the cold crystallization of filled natural rubber. J Polym Sci Part B Polym Phys 45(8):955–962. https://doi.org/10.1002/polb.21105

    Article  CAS  Google Scholar 

  53. Pongtanayut K, Thongpin C, Santawitee O (2013) The effect of rubber on morphology, thermal properties and mechanical properties of PLA/NR and PLA/ENR blends. Energy Procedia 34:888–897. https://doi.org/10.1016/j.egypro.2013.06.826

    Article  CAS  Google Scholar 

  54. Najafi N, M. c. Heuzey,P. j. Carreau, (2013) Crystallization behavior and morphology of polylactide and PLA/clay nanocomposites in the presence of chain extenders. Polym Eng Sci 53(5):1053–1064. https://doi.org/10.1002/pen.23355

    Article  CAS  Google Scholar 

  55. Yuan D, Xu C, Chen Z, Chen Y (2014) Crosslinked bicontinuous biobased polylactide/natural rubber materials: Super toughness, “net-like”-structure of NR phase and excellent interfacial adhesion. Polym Test. https://doi.org/10.1016/J.POLYMERTESTING.2014.07.004

    Article  Google Scholar 

  56. Maspoch ML et al (2015) Ductile-brittle transition behaviour of PLA/o-MMT films during the physical aging process. Express Polym Lett 9(3):185–195. https://doi.org/10.3144/expresspolymlett.2015.20

    Article  CAS  Google Scholar 

  57. Xu S, Tahon J-F, De-Waele I, Stoclet G, Gaucher V (2020) Brittle-to-ductile transition of PLA induced by macromolecular orientation. EXPRESS Polym Lett 14(11):1037–1047

    Article  Google Scholar 

  58. Stoclet G, Lefebvre JM, Séguéla R, Vanmansart C (2014) In-situ SAXS study of the plastic deformation behavior of polylactide upon cold-drawing. Polymer 55(7):1817–1828. https://doi.org/10.1016/j.polymer.2014.02.010

    Article  CAS  Google Scholar 

  59. Candau N et al (2014) Strain-induced crystallization of natural rubber and cross-link densities heterogeneities. Macromolecules 47(16):5815–5824. https://doi.org/10.1021/ma5006843

    Article  CAS  Google Scholar 

  60. Flory PJ (1947) Thermodynamics of crystallization in high polymers I crystallization induced by stretching. J Chem Phys 15(6):397–408. https://doi.org/10.1063/1.1746537

    Article  CAS  Google Scholar 

  61. Candau N, Chazeau L, Chenal J-M, Gauthier C, Munch E (2016) Complex dependence on the elastically active chains density of the strain induced crystallization of vulcanized natural rubbers, from low to high strain rate. Polymer 97:158–166. https://doi.org/10.1016/j.polymer.2016.05.020

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 712949 (TECNIOspring PLUS) and from the Agency for Business Competitiveness of the Government of Catalonia as well as the Spanish Ministerio de Ciencia e Innovación for the Project PID2019-1006518RB-I00.

Author information

Authors and Affiliations

Authors

Contributions

NC was responsible for conceptualization and writing the original draft; NC, NLA and HJ were involved in data curation and software; NC and MLM acquired the funding and carried out supervision; NC, HJ and MLM conducted the investigation; and NC, NLA, HJ and MLM took part in methodology, visualization and writing—reviewing and editing.

Corresponding author

Correspondence to Nicolas Candau.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Chris Cornelius.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Candau, N., León Albiter, N., Jeannot, H. et al. Dynamically vulcanized polylactic acid/natural rubber/waste rubber blends: effect of the rubber content. J Mater Sci 57, 17902–17919 (2022). https://doi.org/10.1007/s10853-022-07795-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07795-4

Navigation