Skip to main content

Advertisement

Log in

A facile one-pot scalable production of super electromagnetic shielding conductive cotton fabric by hierarchical graphene-composites

  • Electronics materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper uses the scaleable and commercial in-situ (exhaust) dyeing method to fabricate reduced graphene oxide (rGO)/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT: PSS) hybrids on knitted cotton fabrics to develop lightweight, flexible, and metal-free knitted cotton fabric for electromagnetic interference shielding (EMI SE) application. The graphene oxide (GO) and PEDOT: PSS solution were directly dyed and reduced through a green reducing agent C6H8O6 (L-ascorbic acid) at a low temperature (60 °C) by a commercially used exhaust dyeing process on cotton fabric. The morphology and elemental analysis, mechanical stability, hydrophobicity, electrical conductivity, and (EMI SE) performance rGO/PEDOT: PSS dyed fabric has been systematically studied. The electrical conductivity of the resultant composite fabric significantly improved up to 4.2 × 103 Scm−1 due to the higher inter bonding and adhesion of fibers in the yarn, and fabric assembly, with each fiber surface finely coated with composite of rGO and PEDOT: PSS with each other due to less interlayer spacing. The mechanical stability of tensile strength and hydrophobic performance of rGO/PEDOT:PSS composite dyed hybrid (RPD-1) significantly improved up to 49 MPa and 156°, respectively, due to an increase of graphene wt.%. The resultant cotton fabric exhibited outstanding EMI shielding performance up to − 49 dB on 30–1530 MHz and 39 dB on 8–18 GHz (X-band) frequency range which shielded almost 99.99% of incident electromagnetic radiation waves.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Ferrari AC et al (2015) Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7(11): 4598–4810

    Article  CAS  Google Scholar 

  2. Li Q et al (2022) Highly sensitive graphene ammonia sensor enhanced by concentrated nitric acid treatment. Appl Surf Sci 586: 152689

    Article  CAS  Google Scholar 

  3. Ahmed A et al (2022) Ultra-sensitive all organic PVDF-TrFE E-spun nanofibers with enhanced β-phase for piezoelectric response. J Mater Sci Mater Electron 33(7): 3965–3981

    Article  CAS  Google Scholar 

  4. Cheng H et al (2017) Graphene-based functional architectures: sheets regulation and macrostructure construction toward actuators and power generators. Acc Chem Res 50(7): 1663–1671

    Article  CAS  Google Scholar 

  5. Lu Y et al (2018) Graphene-based nanomaterials for sodium-ion batteries. Adv Energy Mater 8: 1702469

    Article  CAS  Google Scholar 

  6. Jiang H et al (2022) Towards high rate and high areal capacity Zn ion hybrid supercapacitor: fluffy graphene architecture anchored with ultrathin redox-active molecule. Appl Surf Sci 585: 152695

    Article  CAS  Google Scholar 

  7. Ji X et al (2020) A graphene-based electro-thermochromic textile display. J Mater Chem C 8(44): 15788–15794

    Article  CAS  Google Scholar 

  8. Zhao M et al (2021) Graphene-based motion angle and pressure sensors for lightweight and flexible wearable devices. In: 2021 27th International conference on mechatronics and machine vision in practice (M2VIP). IEEE

  9. Islam MZ et al (2019) Continuous dyeing of graphene on cotton fabric: binder-free approach for electromagnetic shielding. Appl Surf Sci 496: 143636

  10. Zhang L et al (2022) Ultrathin flexible electrospun carbon nanofibers reinforced graphene microgasbags films with three-dimensional conductive network toward synergetic enhanced electromagnetic interference shielding. J Mater Sci Technol 111: 57–65

    Article  Google Scholar 

  11. Song J et al (2016) ASA/graphite/carbon black composites with improved EMI SE, conductivity and heat resistance properties. Iran Polym J 25(2): 111–118

    Article  CAS  Google Scholar 

  12. Luo SJ et al (2016) Electromagnetic interference shielding properties of PEDOT/PSS–halloysite nanotube (HNTs) hybrid films. J Appl Polym Sci 133(47): 44242

    Article  CAS  Google Scholar 

  13. Ghosh S et al (2019) 3D-enhanced, high-performing, super-hydrophobic and electromagnetic-interference shielding fabrics based on silver paint and their use in antibacterial applications. ChemistrySelect 4(40): 11748–11754

    Article  CAS  Google Scholar 

  14. Jia L-C et al (2020) Stretchable liquid metal-based conductive textile for electromagnetic interference shielding. ACS Appl Mater Interfaces 12(47): 53230–53238

    Article  CAS  Google Scholar 

  15. Gupta S et al (2020) Reduced graphene oxide/zinc oxide coated wearable electrically conductive cotton textile for high microwave absorption. Compos Sci Technol 188: 107994

    Article  CAS  Google Scholar 

  16. Li X et al (2022) Flexible graphene/silver nanoparticles/aluminum film paper for high-performance electromagnetic interference shielding. Mater Des 213: 110296

    Article  CAS  Google Scholar 

  17. Safdar F et al (2021) Polymeric textile-based electromagnetic interference shielding materials, their synthesis, mechanism and applications—a review. J Ind Text 51:7293S–7358S

    Article  Google Scholar 

  18. Oliveira FM et al (2020) Recent advances in the electromagnetic interference shielding of 2D materials beyond graphene. ACS Appl Electron Mater 2(10):3048–3071

    Article  CAS  Google Scholar 

  19. Chandra RJ et al (2019) Hybrid polymer composites for EMI shielding application—a review. Mater Res Express 6(8):082008

    Article  CAS  Google Scholar 

  20. Liu J et al (2017) Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv Mater 29(38):1702367

  21. Zachariah SM et al (2022) Hybrid materials for electromagnetic shielding: a review. Polym Compos 43(5): 2507–2544

    Article  CAS  Google Scholar 

  22. Sharma N et al (2020) Advances in functional and protective textiles. Zastita Materijala 1(VI):117–140

  23. Chakraborty J et al (2018) Differential functional finishes for textiles using graphene oxide. Res J Text Apparel: 22(1):77–91

  24. Reddy M et al (2021) A comparative review of natural and synthetic biopolymer composite scaffolds. Polymers 13(7):1105

    Article  CAS  Google Scholar 

  25. Visakh P et al (2022) Polyvinylchloride-based blends: preparation, characterization and applications. Springer Nature, Berlin

    Google Scholar 

  26. Lu P et al (2008) Applications of electrospun fibers. Recent Pat Nanotechnol 2(3):169–182

    Article  CAS  Google Scholar 

  27. Esmaeili E et al (2020) The biomedical potential of cellulose acetate/polyurethane nanofibrous mats containing reduced graphene oxide/silver nanocomposites and curcumin: Antimicrobial performance and cutaneous wound healing. Int J Biol Macromol 152: 418–427

    Article  CAS  Google Scholar 

  28. Verma S et al (2020) Preparation of hydrophobic epoxy–polydimethylsiloxane–graphene oxide nanocomposite coatings for antifouling application. Soft Matter 16(5):1211–1226

    Article  CAS  Google Scholar 

  29. Fernandes M et al (2019) Development of novel bacterial cellulose composites for the textile and shoe industry. Microb Biotechnol 12(4): 650–661

    Article  CAS  Google Scholar 

  30. Wu Q et al (2016) Waterborne polyurethane-based thermoelectric composites and their application potential in wearable thermoelectric textiles. Compos B Eng 107: 59–66

    Article  CAS  Google Scholar 

  31. Zhou J et al (2022) Cellulose for sustainable triboelectric nanogenerators. Adv Energy Sustain Res 3(5):2100161

  32. Hong Y et al (2001) Electromagnetic interference shielding characteristics of fabric complexes coated with conductive polypyrrole and thermally evaporated Ag. Curr Appl Phys 1(6):439–442

    Article  Google Scholar 

  33. Pan T et al (2020) Mulberry-like polyaniline-based flexible composite fabrics with effective electromagnetic shielding capability. Compos Sci Technol 188:107991

    Article  CAS  Google Scholar 

  34. Zhang Y et al (2019) Eco-friendly flame retardant and electromagnetic interference shielding cotton fabrics with multi-layered coatings. Chem Eng J 372: 1077–1090

    Article  CAS  Google Scholar 

  35. Li Y et al (2021) Flexible multilayered films consisting of alternating nanofibrillated cellulose/Fe3O4 and carbon nanotube/polyethylene oxide layers for electromagnetic interference shielding. Chem Eng J 410:128356

    Article  CAS  Google Scholar 

  36. Ghosh S et al (2019) Fabrication and investigation of 3D tuned PEG/PEDOT: PSS treated conductive and durable cotton fabric for superior electrical conductivity and flexible electromagnetic interference shielding. Compos Sci Technol 181:107682

    Article  CAS  Google Scholar 

  37. Das P et al (2022) Acoustic green synthesis of graphene-gallium nanoparticles and PEDOT: PSS hybrid coating for textile to mitigate electromagnetic radiation pollution. ACS Appl Nano Mater 5(1):1644–1655

    Article  CAS  Google Scholar 

  38. Alamer FA (2018) Structural and electrical properties of conductive cotton fabrics coated with the composite polyaniline/carbon black. Cellulose 25(3): 2075–2082

    Article  CAS  Google Scholar 

  39. Shen W et al (2016) Optimized preparation of electrically conductive cotton fabric by an industrialized exhaustion dyeing with reduced graphene oxide. Cellulose 23(5): 3291–3300

    Article  CAS  Google Scholar 

  40. Karim N et al (2017) Scalable production of graphene-based wearable e-textiles. ACS Nano 11(12): 12266–12275

    Article  CAS  Google Scholar 

  41. Pu X et al (2016) Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators. Adv Mater 28(1): 98–105

    Article  CAS  Google Scholar 

  42. Liu L et al (2015) Wearable energy-dense and power-dense supercapacitor yarns enabled by scalable graphene–metallic textile composite electrodes. Nat Commun 6:7260

  43. Ahmed A et al (2019) Preparation of PVDF-TrFE based electrospun nanofibers decorated with PEDOT-CNT/rGO composites for piezo-electric pressure sensor. J Mater Sci Mater Electron 30(15): 14007–14021

    Article  CAS  Google Scholar 

  44. Deb H et al (2022) Kinetics & dynamic studies of dye adsorption by porous graphene nano-adsorbent for facile toxic wastewater remediation. J Water Process Eng 47:102818

    Article  Google Scholar 

  45. Khoso NA et al (2021) The fabrication of a graphene and conductive polymer nanocomposite-coated highly flexible and washable woven thermoelectric nanogenerator. Mater Adv 2(11): 3695–3704

    Article  CAS  Google Scholar 

  46. Shathi MA et al (2020) Graphene coated textile based highly flexible and washable sports bra for human health monitoring. Mater Des 193:108792

    Article  CAS  Google Scholar 

  47. Du F-P et al (2018) PEDOT: PSS/graphene quantum dots films with enhanced thermoelectric properties via strong interfacial interaction and phase separation. Sci Rep 8(1): 1–12

    Google Scholar 

  48. Merche D et al (2010) One step polymerization of sulfonated polystyrene films in a dielectric barrier discharge. Plasma Process Polym 7(9–10): 836–845

    Article  CAS  Google Scholar 

  49. Hsu C-T et al (2015) Synthesis and characterization of nano silver-modified graphene/PEDOT: PSS for highly conductive and transparent nanocomposite films. J Polym Res 22(10):200

  50. Jiang X et al (2017) High performance silicon–organic hybrid solar cells via improving conductivity of PEDOT:PSS with reduced graphene oxide. Appl Surf Sci 407: 398–404

    Article  CAS  Google Scholar 

  51. Mahakul PC et al (2017) Preparation and characterization of PEDOT: PSS/reduced graphene oxide–carbon nanotubes hybrid composites for transparent electrode applications. J Mater Sci 52(10): 5696–5707

    Article  CAS  Google Scholar 

  52. Wu X et al (2016) Highly conductive PEDOT:PSS and graphene oxide hybrid film from a dipping treatment with hydroiodic acid for organic light emitting diodes. J Mater Chem C 4(36): 8528–8534

    Article  CAS  Google Scholar 

  53. Lee SB et al (2015) Preparation and characterization of conducting polymer nanocomposite with partially reduced graphene oxide. Synth Met 201: 61–66

    Article  CAS  Google Scholar 

  54. Liu Y et al (2015) High-performance flexible all-solid-state supercapacitor from large free-standing graphene-PEDOT/PSS films. Sci Rep 5:17045

  55. Mercante LA et al (2017) One-pot preparation of PEDOT:PSS-reduced graphene decorated with Au nanoparticles for enzymatic electrochemical sensing of H2O2. Appl Surf Sci 407: 162–170

    Article  CAS  Google Scholar 

  56. Tiwari DC et al (2018) PEDOT: PSS: rGO nanocomposite as a hole transport layer (HTLs) for P3HT:PCBM based organic solar cells. AIP Conf Proc 1953(1):100065

    Article  CAS  Google Scholar 

  57. Stankovich S et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7): 1558–1565

    Article  CAS  Google Scholar 

  58. Lim HC et al (2015) Self-assembled poly (3, 4-ethylene dioxythiophene): poly (styrenesulfonate)/graphene quantum dot organogels for efficient charge transport in photovoltaic devices. ACS Appl Mater Interfaces 7(21): 11069–11073

    Article  CAS  Google Scholar 

  59. Kepić DP et al (2014) Preparation of PEDOT: PSS thin films doped with graphene and graphene quantum dots. Synth Met 198: 150–154

    Article  CAS  Google Scholar 

  60. Shathi MA et al (2020) All organic graphene oxide and poly (3, 4-ethylene dioxythiophene)-poly (styrene sulfonate) coated knitted textile fabrics for wearable electrocardiography (ECG) monitoring. Synth Met 263:116329

    Article  CAS  Google Scholar 

  61. Wei Q et al (2020) Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film. Adv Mater 32(14):1907411

  62. Bora PJ et al (2019) Outstanding absolute electromagnetic interference shielding effectiveness of cross-linked PEDOT: PSS film. Adv Mater Interfaces 6(22):1901353

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaqin Fu.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1031 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M.Z., Deb, H., Hasan, M.K. et al. A facile one-pot scalable production of super electromagnetic shielding conductive cotton fabric by hierarchical graphene-composites. J Mater Sci 57, 15451–15463 (2022). https://doi.org/10.1007/s10853-022-07411-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07411-5

Navigation