Skip to main content
Log in

Layer-by-layer assembly of PDMS-coated nickel ferrite/multiwalled carbon nanotubes/cotton fabrics for robust and durable electromagnetic interference shielding

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The military and industry have multiple needs for Electromagnetic interference (EMI) shielding textiles, but it is still a huge challenge to realize integration of inorganic nanomaterials and fabric with good interface adhesion. Therefore, carefully chosen EMI materials and preparation techniques are key to provide commercially acceptable fabrics. Herein, a flexible and durable EMI shielding cotton fabric was fabricated by a layer-by-layer assembly of multiwalled carbon nanotubes (MWCNTs) and nickel ferrite (NiFe2O4) nanoparticles, following by an organic poly (dimethylsiloxane) (PDMS) coating. Benefiting from the strong interfacial interactions between MWCNTs and NiFe2O4, the efficient electrical, magnetic and thermally conductive pathways were successfully constructed on the cotton fabric. The resultant composite fabrics exhibited high electrical-magnetic properties, superior EMI shielding effectiveness of ≈ 84.5 dB in X-band with a 0.96 mm thickness, and markedly enhanced thermal conductivity (2.52 W m− 1K− 1). Furthermore, the external PDMS coating not only imparted a water-resistant feature, but also improved the structural and performance stability while maintaining satisfactory air permeability. Based on these results, the layer-by-layer assembly approach can be viewed as an efficient tool to fabricate protective textiles against EMI radiation pollution.

Graphic Abstract

A new surfactant assisted acid prehydrolysis process for enhancing biomass pretreatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Cao MS, Yang J, Song W, Zhang D, Wen B, Jin H, Hou ZL, Yuan J (2012) Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption. Acs Appl Mater Interfaces 4:6949–6956

    CAS  PubMed  Google Scholar 

  • Cataldi P, Ceseracciu L, Athanassiou A, Bayer IS (2017) Healable cotton-graphene nanocomposite conductor for wearable electronics. ACS Appl Mater Interfaces 9:13825–13830

    CAS  PubMed  Google Scholar 

  • Chen Y, Zhang HB, Yang Y, Wang M, Cao A, Yu ZZ (2016) High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding. Adv Funct Mater 26:447–455

    CAS  Google Scholar 

  • Cui CH, Yan DX, Pang H, Jia LC, Xu X, Yang S, Xu JZ, Li ZM (2017) A high heat-resistance bioplastic foam with efficient electromagnetic interference shielding. Chem Eng J 323:29–36

    CAS  Google Scholar 

  • Ghosh S, Mondal S, Ganguly S, Remanan S, Singha N, Das NC (2018a) Carbon nanostructures based mechanically robust conducting cotton fabric for improved electromagnetic interference shielding. Fiber Polym 19:1064–1073

    CAS  Google Scholar 

  • Ghosh S, Remanan S, Mondal S, Ganguly S, Das P, Singha N, Das NC (2018b) An approach to prepare mechanically robust full IPN strengthened conductive cotton fabric for high strain tolerant electromagnetic interference shielding. Chem Eng J 344:138–154

    CAS  Google Scholar 

  • Ghosh S, Ganguly S, Das P, Das TK, Bose M, Singha NK, Das AK, Das NC (2019a) Fabrication of reduced graphene oxide/silver nanoparticles decorated conductive cotton fabric for high performing electromagnetic interference shielding and antibacterial application. Fiber Polym 20:1161–1171

    CAS  Google Scholar 

  • Ghosh S, Ganguly S, Remanan S, Das NC (2019b) Fabrication and investigation of 3D tuned PEG/PEDOT: PSS treated conductive and durable cotton fabric for superior electrical conductivity and flexible electromagnetic interference shielding. Compos Sci Technol 181:107682

    Google Scholar 

  • González M, Baselga J, Pozuelo J (2019) Modulating the electromagnetic shielding mechanisms by thermal treatment of high porosity graphene aerogels. Carbon 147:27–34

    Google Scholar 

  • Hang Z, Lei H, Lu Y (2016) Electromagnetic shielding effectiveness and serviceability of the multilayer structured cuprammonium fabric/polypyrrole/copper (CF/PPy/Cu) composite. Chem Eng J 297:170–179

    Google Scholar 

  • He P, Wang XX, Cai YZ, Shu JC, Zhao QL, Yuan J, Cao MS (2019) Tailoring Ti3C2Tx nanosheets to tune local conductive network as an environmentally friendly material for highly efficient electromagnetic interference shielding. Nanoscale 11:6080–6088

    CAS  PubMed  Google Scholar 

  • Hsiao ST, Ma CM, Liao WH, Wang YS, Li SM, Huang YC, Yang RB, Liang WF (2014) Lightweight and flexible reduced graphene oxide/water-borne polyurethane composites with high electrical conductivity and excellent electromagnetic interference shielding performance. ACS Appl Mater Interfaces 6:10667–10678

    CAS  PubMed  Google Scholar 

  • Huang G, Liu L, Wang R, Zhang J, Sun X, Peng H (2016) Smart color-changing textile with high contrast based on a single-sided conductive fabric. J Mater Chem C 4:7589–7594

    CAS  Google Scholar 

  • Jia L-C, Xu L, Ren F, Ren P-G, Yan D-X, Li Z-M (2019) Stretchable and durable conductive fabric for ultrahigh performance electromagnetic interference shielding. Carbon 144:101–108

    CAS  Google Scholar 

  • Jiao Q, Wang Y, Liang H, Li H, Yun Z (2016) Synthesis of magnetic nickel ferrite microspheres and their microwave absorbing properties. Chem Res Chinese Univ 32:678–681

    CAS  Google Scholar 

  • Kong L, Yin X, Xu H, Yuan X, Wang T, Xu Z, Huang j, Yang R, Fan H (2019) Powerful absorbing and lightweight electromagnetic shielding CNTs/RGO composite. Carbon 145:61–66

    CAS  Google Scholar 

  • Li J, Qi S, Zhang M, Wang Z (2015) Thermal conductivity and electromagnetic shielding effectiveness of composites based on Ag-plating carbon fiber and epoxy. J Appl Polym Sci 132:42306

    Google Scholar 

  • Li J, Xie Y, Lu W, Chou TW (2018) Flexible electromagnetic wave absorbing composite based on 3D rGO-CNT-Fe3O4 ternary films. Carbon 129:76–84

    CAS  Google Scholar 

  • Liu Y, Jiang H, Zhu Y, Yang X, Li C (2016) Transition metals (Fe, Co, and Ni) encapsulated in nitrogen-doped carbon nanotubes as bi-functional catalysts for oxygen electrode reactions. J Mater Chem A 4:1694–1701

    CAS  Google Scholar 

  • Liu M, Pu X, Jiang C, Liu T, Huang X, Chen L, Du C, Sun J, Hu W, Wang Z (2017a) Large-area all-textile pressure sensors for monitoring human motion and physiological signals. Adv Mater 29:1303700

    Google Scholar 

  • Liu C, Ye X, Wang X, Liao X, Huang X, Shi B (2017b) Collagen fiber membrane as an absorptive substrate to coat with carbon nanotubes-encapsulated metal nanoparticles for lightweight, wearable, and absorption-dominated shielding membrane. Ind Eng Chem Res 56:8553–8562

    CAS  Google Scholar 

  • Liu J, Liu Y, Zhang H-B, Dai Y, Liu Z, Yu Z-Z (2018a) Superelastic and multifunctional graphene-based aerogels by interfacial reinforcement with graphitized carbon at high temperatures. Carbon 132:95–103

    CAS  Google Scholar 

  • Liu J, Zhang HB, Xie X, Yang R, Liu Z, Liu Y, Yu ZZ (2018b) Multifunctional, superelastic, and lightweight MXene/polyimide aerogels. Small 14:e1802479

    PubMed  Google Scholar 

  • Lv P, Wei A, Wang Y, Li D, Zhang J, Lucia LA, Wei Q (2016) Copper nanoparticles-sputtered bacterial cellulose nanocomposites displaying enhanced electromagnetic shielding, thermal, conduction, and mechanical properties. Cellulose 23:3117–3127

    CAS  Google Scholar 

  • Moglie F, Micheli D, Laurenzi S, Marchetti M, Mariani Primiani V (2012) Electromagnetic shielding performance of carbon foams. Carbon 50:1972–1980

    CAS  Google Scholar 

  • Ren F, Song D, Li Z, Jia L, Zhao Y, Yan D, Ren P (2018) Synergistic effect of graphene nanosheets and carbonyl iron–nickel alloy hybrid filler on electromagnetic interference shielding and thermal conductivity of cyanate ester composites. J Mater Chem C 6:1476–1486

    CAS  Google Scholar 

  • Shahzad F, Alhabeb M, Hatter CB, Anasori B, Man HS, Koo CM, Gogotsi Y (2016) Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353:1137–1140

    CAS  PubMed  Google Scholar 

  • Song WL, Guan XT, Fan LZ, Cao WQ, Wang CY, Zhao QL, Cao MS (2015) Magnetic and conductive graphene papers toward thin layers of effective electromagnetic shielding. J Mater Chem A 3:2097–2107

    CAS  Google Scholar 

  • Varshney S, Ohlan A, Jain VK, Dutta VP, Dhawan SK (2014) In situ synthesis of polypyrrole-γ-Fe2O3-fly ash nanocomposites for protection against EMI pollution. Ind Eng Chem Res 53:14282–14290

    CAS  Google Scholar 

  • Wang Y, Wang W, Yu D (2017) Three-phase heterostructures f-NiFe2O4/PANI/PI EMI shielding fabric with high microwave absorption performance. Appl Sur Sci 425:518–525

    CAS  Google Scholar 

  • Wang L, Qiu H, Liang C, Song P, Han Y, Gu J, Kong J, Pan D, Guo Z (2019a) Electromagnetic interference shielding MWCNT-Fe3O4@Ag/epoxy nanocomposites with satisfactory thermal conductivity and high thermal stability. Carbon 141:506–514

    CAS  Google Scholar 

  • Wang QW, Zhang HB, Liu J, Zhao S, Xie X, Liu X, Yang R, Koratkar N, Yu ZZ (2019b) Multifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performances. Adv Funct Mater 29:1806819

    Google Scholar 

  • Weng GM, Li J, Alhabed M, Karpovich C, Wang H, Lipton J, Maleski K, Kong J, Shaulsky E, Elimelech M, Gogotsi Y, Taylor A (2018) Layer-by-layer assembly of cross-functional semi-transparent MXene-carbon nanotubes composite films for next-generation electromagnetic interference shielding. Adv Funct Mater 28:1803360

    Google Scholar 

  • Xu Y, Yang Y, Yan DX, Duan H, Zhao G, Liu Y (2019) Flexible and conductive polyurethane composites for electromagnetic shielding and printable circuit. Chem Eng J 360:1427–1436

    CAS  Google Scholar 

  • Yan DX, Pang H, Li B, Vajtai R, Xu L, Ren PG, Wang JH, Li ZM (2015) Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv Funct Mater 25:559–566

    CAS  Google Scholar 

  • Yang Y, Li M, Wu Y, Wang T, Choo ESG, Ding J, Zong B, Yang Z, Xue J (2016) Nanoscaled self-alignment of Fe3O4 nanodiscs in ultrathin rGO films with engineered conductivity for electromagnetic interference shielding. Nanoscale 8:15989–15998

    CAS  PubMed  Google Scholar 

  • Zeng Z, Chen M, Pei Y, Seyed Shahabadi SI, Che B, Wang P, Lu X (2017) Ultralight and flexible polyurethane/silver nanowire nanocomposites with unidirectional pores for highly effective electromagnetic shielding. ACS Appl Mater Interfaces 9:32211–32219

    CAS  PubMed  Google Scholar 

  • Zhan Y, Wang J, Zhang K, Li Y, Meng Y, Yan N, Wei W, Peng F, Xia H (2018a) Fabrication of a flexible electromagnetic interference shielding Fe3O4@reduced graphene oxide/natural rubber composite with segregated network. Chem Eng J 344:184–193

    CAS  Google Scholar 

  • Zhan Y, Wang J, Zhang K, Li Y, Meng Y, Yan N, Wei W, Peng F, Xia H (2018b) Fabrication of a flexible electromagnetic interference shielding Fe3O4@reduced graphene oxide/natural rubber composite with segregated network. Chem Eng J 344:184–193

    CAS  Google Scholar 

  • Zhang Y, Qiu M, Yu Y, Wen B, Cheng L (2016) A novel polyaniline-coated bagasse fiber composite with core-shell heterostructure provides effective electromagnetic shielding performance. ACS Appl Mater Interfaces 9:809–818

    PubMed  Google Scholar 

  • Zhang Y, Zhang H-B, Wu X, Deng Z, Zhou E, Yu ZZ (2019) Nanolayered cobalt@carbon hybrids derived from metal-organic frameworks for microwave absorption. ACS Appl Nano Mater 2:2325–2335

    CAS  Google Scholar 

  • Zhao H, Hou L, Bi S, Lu Y (2017) Enhanced X-band electromagnetic-interference shielding performance of layer-structured fabric-supported polyaniline/cobalt-nickel coatings. ACS Appl Mater Interfaces 9:33059–33070

    CAS  PubMed  Google Scholar 

  • Zhao S, Zhang HB, Luo JQ, Wang QW, Xu B, Hong S, Yu ZZ (2018) Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 12:11193–11202

    CAS  PubMed  Google Scholar 

  • Zhou E, Xi J, Guo Y, Liu Y, Xu Z, Gao W, Ying J, Chen Z, Gao C (2018) Synergistic effect of graphene and carbon nanotube for high-performance electromagnetic interference shielding films. Carbon 133:316–322

    CAS  Google Scholar 

  • Zhu S, Xing C, Wu F, Zuo X, Zhang Y, Yu C, Chen M, Li W, Li Q, Liu L (2019) Cake-like flexible carbon nanotubes/graphene composite prepared via a facile method for high-performance electromagnetic interference shielding. Carbon 145:259–265

    CAS  Google Scholar 

  • Zou L, Zhang S, Li X, Lan C, Qiu Y, Ma Y (2016) Step-by-step strategy for constructing multilayer structured coatings toward high-efficiency electromagnetic interference shielding. Adv Mater Interfaces 3:1500476

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities, and National Nature Science Foundation of China (No. 51403032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Yu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2223.0 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, W., Qi, Q. et al. Layer-by-layer assembly of PDMS-coated nickel ferrite/multiwalled carbon nanotubes/cotton fabrics for robust and durable electromagnetic interference shielding. Cellulose 27, 2829–2845 (2020). https://doi.org/10.1007/s10570-019-02949-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02949-1

Keywords

Navigation