Skip to main content

Advertisement

Log in

All-electrospun performance-enhanced triboelectric nanogenerator based on the charge-storage process

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The output performance of the triboelectric nanogenerator (TENG) greatly depends on the surface charge density. However, the surface charge dissipation and the electron transfer would result in a sharp decrease in the output performance. In this work, we proposed a functional multilayer negative structure of TENG, using polystyrene interface material to provide high electron trapping holes and conductive carbon black doped polystyrene to accelerate charge transfer rate to improve the charge density further. It was indicated that the open-circuit voltage generated by the TENG with the polystyrene layer was 460% of that of the PVDF single-layer structure and was 694% enhanced by introducing conductive carbon black in the multilayer performance-enhanced TENG (PE-TENG). The peak output power was up to 52.3 μW in a contact area of 3 × 3 cm2. In short, it proves an effective way to improve the output performance of flexible triboelectric nanogenerators with comprehensive applications in wearable energy sources and human health monitoring sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Wang ZL (2017) On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater Today 20(2):74–82. https://doi.org/10.1016/j.mattod.2016.12.001

    Article  Google Scholar 

  2. Li SX, Liu L, Zhao ZH, Zhou LL, Yin X, Li XY, Gao YK, Zhang CG, Zhang Q, Wang J, Wang ZL (2020) A fully self-powered vibration monitoring system driven by dual-mode triboelectric nanogenerators. ACS Nano 14(2):2475–2482. https://doi.org/10.1021/acsnano.9b10142

    Article  CAS  Google Scholar 

  3. Kwon SH, Kim WK, Park J, Yang Y, Yoo B, Han CJ, Kim YS (2016) Fabric active transducer stimulated by water motion for self powered wearable device. ACS Appl Mater Interfaces 8(37):24579–24584. https://doi.org/10.1021/acsami.6b06916

    Article  CAS  Google Scholar 

  4. Bowen CR, Taylor J, LeBoulbar E, Zabek D, Chauhan A, Vaish R (2014) Pyroelectric materials and devices for energy harvesting applications. Energy Environ Sci 7(12):3836–3856. https://doi.org/10.1039/c4ee01759e

    Article  Google Scholar 

  5. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mat 22(3):587–603. https://doi.org/10.1021/cm901452z

    Article  CAS  Google Scholar 

  6. Choi NS, Chen ZH, Freunberger SA, Ji XL, Sun YK, Amine K, Yushin G, Nazar LF, Cho J, Bruce PG (2012) Challenges facing lithium batteries and electrical double-layer capacitors. Angew Chem-Int Edit 51(40):9994–10024. https://doi.org/10.1002/anie.201201429

    Article  CAS  Google Scholar 

  7. Wang XF, Lu XH, Liu B, Chen D, Tong YX, Shen GZ (2014) Flexible energy-storage devices: design consideration and recent progress. Adv Mater 26(28):4763–4782. https://doi.org/10.1002/adma.201400910

    Article  CAS  Google Scholar 

  8. Fan FR, Tang W, Wang ZL (2016) Flexible nanogenerators for energy harvesting and self-powered electronics. Adv Mater 28(22):4283–4305. https://doi.org/10.1002/adma.201504299

    Article  CAS  Google Scholar 

  9. Wu CS, Wang AC, Ding WB, Guo HY, Wang ZL (2019) Triboelectric nanogenerator: a foundation of the energy for the New Era. Adv Energy Mater 9(1):1802906. https://doi.org/10.1002/aenm.201802906

    Article  CAS  Google Scholar 

  10. Kim DW, Lee JH, Kim JK, Jeong U (2020) Material aspects of triboelectric energy generation and sensors. NPG Asia Mater 12(1):6–23. https://doi.org/10.1038/s41427-019-0176-0

    Article  CAS  Google Scholar 

  11. Niu SM, Wang ZL (2015) Theoretical systems of triboelectric nanogenerators. Nano Energy 14:161–192. https://doi.org/10.1016/j.nanoen.2014.11.034

    Article  CAS  Google Scholar 

  12. Li HY, Su L, Kuang SY, Pan CF, Zhu G, Wang ZL (2015) Significant enhancement of triboelectric charge density by fluorinated surface modification in nanoscale for converting mechanical energy. Adv Funct Mater 25(35):5691–5697. https://doi.org/10.1002/adfm.201502318

    Article  CAS  Google Scholar 

  13. Yu YH, Wang XD (2016) Chemical modification of polymer surfaces for advanced triboelectric nanogenerator development. Extreme Mech Lett 9:514–530. https://doi.org/10.1016/j.eml.2016.02.019

    Article  Google Scholar 

  14. Fan FR, Lin L, Zhu G, Wu WZ, Zhang R, Wang ZL (2012) Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett 12(6):3109–3114. https://doi.org/10.1021/nl300988z

    Article  CAS  Google Scholar 

  15. Liu GX, Nie JH, Han CB, Jiang T, Yang ZW, Pang YK, Xu L, Guo T, Bu TZ, Zhang C, Wang ZL (2018) Self-powered electrostatic adsorption face mask based on a triboelectric nanogenerator. ACS Appl Mater Interfaces 10(8):7126–7133. https://doi.org/10.1021/acsami.7b18732

    Article  CAS  Google Scholar 

  16. Guan XY, Xu BG, Wu MJ, Jing TT, Yang YJ, Gao YY (2021) Breathable, washable and wearable woven-structured triboelectric nanogenerators utilizing electrospun nanofibers for biomechanical energy harvesting and self-powered sensing. Nano Energy 80:105549. https://doi.org/10.1016/j.nanoen.2020.105549

    Article  CAS  Google Scholar 

  17. Huang LB, Xu W, Hao JH (2017) Energy device applications of synthesized 1D polymer nanomaterials. Small 13(43):1701820. https://doi.org/10.1002/smll.201701820

    Article  CAS  Google Scholar 

  18. Cui N, Gu L, Lei Y, Liu J, Qin Y, Ma X, Hao Y, Wang ZL (2016) Dynamic behavior of the triboelectric charges and structural optimization of the friction layer for a triboelectric nanogenerator. ACS Nano 10(6):6131–6138. https://doi.org/10.1021/acsnano.6b02076

    Article  CAS  Google Scholar 

  19. Jiang HX, Lei H, Wen Z, Shi JH, Bao DQ, Chen C, Jiang JX, Guan QB, Sun XH, Lee ST (2020) Charge-trapping-blocking layer for enhanced triboelectric nanogenerators. Nano Energy 75:105011. https://doi.org/10.1016/j.nanoen.2020.105011

    Article  CAS  Google Scholar 

  20. Firdous I, Fahim M, Daoud WA (2021) Performance enhancement of triboelectric nanogenerator through hole and electron blocking layers-based interfacial design. Nano Energy 82:105694. https://doi.org/10.1016/j.nanoen.2020.105694

    Article  CAS  Google Scholar 

  21. Park HW, Huynh ND, Kim W, Lee C, Nam Y, Lee S, Chung KB, Choi D (2018) Electron blocking layer-based interfacial design for highly-enhanced triboelectric nanogenerators. Nano Energy 50:9–15. https://doi.org/10.1016/j.nanoen.2018.05.024

    Article  CAS  Google Scholar 

  22. Feng YG, Zheng YB, Zhang G, Wang DA, Zhou F, Liu WM (2017) A new protocol toward high output TENG with polyimide as charge storage layer. Nano Energy. https://doi.org/10.1016/j.nanoen.2017.06.017

    Article  Google Scholar 

  23. Jiang CM, Wu C, Li XJ, Yao Y, Lan LY, Zhao FN, Ye ZZ, Ying YB, Ping JF (2019) All-electrospun flexible triboelectric nanogenerator based on metallic MXene nanosheets. Nano Energy 59:268–276. https://doi.org/10.1016/j.nanoen.2019.02.052

    Article  CAS  Google Scholar 

  24. Ding YF, Shi YX, Nie JH, Ren ZW, Li SY, Wang F, Tian JW, Chen XY, Wang ZL (2020) Thermochromic triboelectric nanogenerator enabling direct visualization of temperature change during operation. Chem Eng J 388(15):124369. https://doi.org/10.1016/j.cej.2020.124369

    Article  CAS  Google Scholar 

  25. Li Y, Xiong JQ, Lv J, Chen J, Gao DC, Zhang XX, Lee PS (2020) Mechanically interlocked stretchable nanofibers for multifunctional wearable triboelectric nanogenerator. Nano Energy 78:105358. https://doi.org/10.1016/j.nanoen.2020.105358

    Article  CAS  Google Scholar 

  26. Zheng Y, Cheng L, Yuan M, Wang Z, Zhang L, Qin Y, Jing T (2014) An electrospun nanowire-based triboelectric nanogenerator and its application in a fully self-powered UV detector. Nanoscale 6(14):7842–7846. https://doi.org/10.1039/c4nr01934b

    Article  CAS  Google Scholar 

  27. Willatzen M, Wang ZL (2018) Theory of contact electrification: optical transitions in two-level systems. Nano Energy 52:517–523. https://doi.org/10.1016/j.nanoen.2018.08.015

    Article  CAS  Google Scholar 

  28. Yu GF, Yan X, Yu M, Jia MY, Pan W, He XX, Han WP, Zhang ZM, Yu LM, Long YZ (2016) Patterned, highly stretchable and conductive nanofibrous PANI/PVDF strain sensors based on electrospinning and in situ polymerization. Nanoscale 8(5):2944–2950. https://doi.org/10.1039/c5nr08618c

    Article  CAS  Google Scholar 

  29. Wang ZL (2013) Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7(11):9533–9557. https://doi.org/10.1021/nn404614z

    Article  CAS  Google Scholar 

  30. Chen BD, Tang W, He C, Deng CR, Yang LJ, Zhu LP, Chen J, Shao JJ, Liu L, Wang ZL (2018) Water wave energy harvesting and self-powered liquid-surface fluctuation sensing based on bionic-jellyfish triboelectric nanogenerator. Mater Today 21(1):88–97. https://doi.org/10.1016/j.mattod.2017.10.006

    Article  CAS  Google Scholar 

  31. Sun N, Wang GG, Zhao HX, Cai YW, Li JZ, Li GZ, Zhang XN, Wang BL, Han JC, Wang YH, Yang Y (2021) Waterproof, breathable and washable triboelectric nanogenerator based on electrospun nanofiber films for wearable electronics. Nano Energy 90:106639. https://doi.org/10.1016/j.nanoen.2021.106639

    Article  CAS  Google Scholar 

  32. Cui NY, Liu JM, Lei YM, Gu L, Xu Q, Liu SH, Qin Y (2018) High-performance triboelectric nanogenerator with a rationally designed friction layer structure. ACS Appl Energ Mater 1(6):2891–2897. https://doi.org/10.1021/acsaem.8b00530

    Article  CAS  Google Scholar 

  33. Li Z, Zhu M, Qiu Q, Yu J, Ding B (2018) Multilayered fiber-based triboelectric nanogenerator with high performance for biomechanical energy harvesting. Nano Energy 53:726–733. https://doi.org/10.1016/j.nanoen.2018.09.039

    Article  CAS  Google Scholar 

  34. Kim WG, Kim DW, Tcho IW, Kim JK, Kim MS, Choi YK (2021) Triboelectric nanogenerator: structure, mechanism, and applications. ACS Nano 15(1):258–287. https://doi.org/10.1021/acsnano.0c09803

    Article  CAS  Google Scholar 

  35. Wang JQ, Zi YL, Li SY, Chen XY (2020) High-voltage applications of the triboelectric nanogenerator-opportunities brought by the unique energy technology. MRS Energy Sustain 6(1):17–40. https://doi.org/10.1557/mre.2020.2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the national first-class discipline program of Light Industry Technology and Engineering (LITE2018-21), the Natural Science Foundation of Jiangsu Province (BK20180628), the National Science Foundation of China (51803078), 111 Project (B17021), the Fundamental Research Funds for the Central Universities (JUSRP11701), the Priority Academic Program Development of Jiangsu Higher Education Institutions, Topnotch Academic Programs Project of Jiangsu Higher Education Institutions (PPZY2015B147).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qufu Wei.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Gregory Rutledge.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4444 KB)

Supplementary file2 (MP4 1683 KB)

Supplementary file3 (MP4 1277 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, Y., Huang, J., Liao, S. et al. All-electrospun performance-enhanced triboelectric nanogenerator based on the charge-storage process. J Mater Sci 57, 5334–5345 (2022). https://doi.org/10.1007/s10853-022-06927-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-06927-0

Navigation