Skip to main content

Advertisement

Log in

A review of lanthanide-based fluorescent nanofiber membranes by electrospinning and their applications

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In recent years, rare earth complexes have become famous for their unique luminescence characteristics, such as clear emission bands, long lifetimes, and high luminous quantum efficiency. Since lanthanide ions have relatively small absorption areas in the ultraviolet region, they absorb light weakly. However, the excitation can be improved via coordination with organic ligands and subsequent energy transfer from the ligand triplet state to a coordinated metal ion. Electrospinning is a processing method that can readily combine rare earth complexes with matrix materials, to obtain fiber membranes with high fluorescence efficiency and stable mechanical properties. Here, we report the application of fluorescent nanofibers to color-tunable materials and oxygen sensing materials by discussing the electrospinning techniques used to produce electrospun nanofibers containing lanthanide complexes. We then focus on the mechanism of luminescence of fluorescent nanofibers, discussing polymer-based membranes and ceramic-based membranes based on the main constituent materials of the fiber membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Pang LL, Ming JF, Pan FK, Ning X (2019) Fabrication of silk fibroin fluorescent nanofibers via electrospinning. Polymers 11(6):986. https://doi.org/10.3390/polym11060986

    Article  CAS  Google Scholar 

  2. Wang X, Wang Y, Huang L, Li B, Yan X, Huang Z, Wang Y, Kipper MJ, Tang J (2021) Sensitive Cu2+ detection by reversible on-off fluorescence using Eu3+ complexes in SiO2, in chitosan/polyethylene oxide nanofibers. Mater Des 205:109708. https://doi.org/10.1016/j.matdes.2021.109708

    Article  CAS  Google Scholar 

  3. Hu ZQ, Yang SS, Jiang ZY, Guo DC (2020) Novel Schiff-base derivatives and corresponding Eu(III) complexes: multiple-color, pH-responsive mechanism and fluorescence property. J Mol Liq 308:113071. https://doi.org/10.1016/j.molliq.2020.113071

    Article  CAS  Google Scholar 

  4. Kara H, Oylumluoglu G, Coban MB (2020) Photoluminescence properties of a new Sm(III) Complex/PMMA electrospun composite fibers. J Cluster Sci 31(4):701–708. https://doi.org/10.1007/s10876-019-01677-7

    Article  CAS  Google Scholar 

  5. Bai JY, Liu Y, Hou YJ, Wang SH (2018) Electrospinning preparation and luminescence properties of Eu-2(PBT)(3)(NO3)(3)/PMMA composite nanofibers. Mater Chem Phys 217:486–492. https://doi.org/10.1016/j.matchemphys.2018.07.011

    Article  CAS  Google Scholar 

  6. Huang LB, Cheng LH, Yu HQ, Zhang JS, Zhou L, Sun JS, Zhong HY, Li XP, Tian Y, Zheng YF, Yu TT, Li CJM, Zhong H, Liu W, Zhang LH, Wang J, Chen BJ (2012) Electrospinning preparation and optical transition properties of Eu(DBM)(3)Phen/PS fluorescent composite fibers. Opt Commun 285(6):1476–1480. https://doi.org/10.1016/j.optcom.2011.10.006

    Article  CAS  Google Scholar 

  7. Binnemans K (2009) Lanthanide-based luminescent hybrid materials. Chem Rev 109(9):4283–4374. https://doi.org/10.1021/cr8003983

    Article  CAS  Google Scholar 

  8. Lu P, Wang YX, Huang LJ, Lian SX, Wang Y, Tang JG, Belfiore LA, Kipper MJ (2020) Tb3+/Eu3+ complex-doped rigid nanoparticles in transparent nanofibrous membranes exhibit high quantum yield fluorescence. Nanomaterials 10(4):694. https://doi.org/10.3390/nano10040694

    Article  CAS  Google Scholar 

  9. Coban MB, Gungor E, Acar Y, Alpaslan FK, Subasat HK (2020) Eu@PMMA and Sm@PMMA nanofibers prepared by electrospinning: structure, morphology, luminescence and magnetic properties. CrystEngComm 22(37):6116–6127. https://doi.org/10.1039/d0ce00507j

    Article  CAS  Google Scholar 

  10. Camargo H, Paolini TB, Niyama E, Brito HF, Cremona M (2013) New rare-earth quinolinate complexes for organic light-emitting devices. Thin Solid Films 528(15):36–41. https://doi.org/10.1016/j.tsf.2012.09.085

    Article  CAS  Google Scholar 

  11. Krishna VM, Mahamuda S, Talewar RA, Swapna K, Venkateswarlu M, Rao AS (2018) Dy3+ ions doped oxy-fluoro boro tellurite glasses for the prospective optoelectronic device applications. J Alloys Compd 762:814–826. https://doi.org/10.1016/j.jallcom.2018.05.191

    Article  CAS  Google Scholar 

  12. Siva R, Swapna K, Sk M, Venkateswarlu M, Rao AS, Vijaya PG (2018) Investigation on structural and luminescence features of Dy3+ ions doped alkaline-earth boro tellurite glasses for optoelectronic devices. Opt Mater 85:200–210. https://doi.org/10.1016/j.optmat.2018.08.057

    Article  CAS  Google Scholar 

  13. Zhang H, Song H, Yu H, Bai X, Li S, Pan G, Dai Q, Wang T, Li W, Lu S (2007) Electrospinning preparation and photoluminescence properties of rare-earth complex/polymer composite fibers. J Physl Chem C 111:6524–6527. https://doi.org/10.1021/jp0684123

    Article  CAS  Google Scholar 

  14. Fe Ng J, Zhang H (2013) ChemInform abstract: hybrid materials based on lanthanide organic complexes: a review. ChemInform 42:387. https://doi.org/10.1039/c2cs35069f

    Article  CAS  Google Scholar 

  15. Wang D, Luo Z, Liu Z, Wang DJ, Fan L, Yin GD (2016) Synthesis and photoluminescent properties of Eu (III) complexes with fluorinated beta-diketone and nitrogen heterocyclic ligands. Dyes Pigments 132:398–404. https://doi.org/10.1016/j.dyepig.2016.05.026

    Article  CAS  Google Scholar 

  16. Schrems A, Larisch VD, Stanetty C, Dutter K, Damiati S, Sleytr UB, Schuster B (2011) Liposome fusion on proteinaceous S-layer lattices triggered via beta-diketone ligand-europium(III) complex formation. Soft Matter 7(12):5514–5518. https://doi.org/10.1039/c1sm05468f

    Article  CAS  Google Scholar 

  17. Sun JY, Song B, Ye ZQ, Yuan JL (2015) Mitochondria targetable time-gated luminescence probe for singlet oxygen based on a beta-diketonate-europium complex. Inorg Chem 54(24):11660–11668. https://doi.org/10.1021/acs.inorgchem.5b02458

    Article  CAS  Google Scholar 

  18. Li WZ, Yan PF, Hou GF, Li HF, Li GM (2013) Near-infrared luminescent hybrid materials - PMMA doped with a neodymium complex: synthesis, structure and photophysical properties. Rsc Adv 3(39):18173–18180. https://doi.org/10.1039/c3ra41594e

    Article  CAS  Google Scholar 

  19. Zhang XP, Wen SP, Hu S, Chen Q, Fong H, Zhang LQ, Liu L (2010) Luminescence properties of Eu(III) Complex/Polyvinylpyrrolidone electrospun composite nanofibers. J Phys Chem C 114(9):3898–3903. https://doi.org/10.1021/jp9119843

    Article  CAS  Google Scholar 

  20. Tao Y, Yan PF, Wang C, Li GM (2013) Luminescent electrospun composite nanofibers of Eu(TFI)(3)(Phen) center dot CHCl3/polyvinylpyrrolidone. J Mater Sci 48(19):6682–6688. https://doi.org/10.1007/s10853-013-7468-5

    Article  CAS  Google Scholar 

  21. Somashekarappa H, Annadurai V, Sangappa SG, Somashekar R (2002) Structure-property relation in varieties of acid dye processed silk fibers. Mater Lett 53(6):415–420. https://doi.org/10.1016/s0167-577x(01)00517-1

    Article  CAS  Google Scholar 

  22. Ma QL, Yu WS, Dong XT, Wang JX, Liu GX, Xu J (2012) Electrospinning preparation and properties of Fe3O4/Eu(BA)(3)phen/PVP magnetic-photoluminescent bifunctional composite nanofibers. J Nanopart Res 14(10):145–420. https://doi.org/10.1007/s11051-012-1203-z

    Article  CAS  Google Scholar 

  23. Ketabchi N, Dinarvand R, Adabi M, Gholami M, Firoozi S, Amanzadi B, Faridi-Majidi R (2021) Study of third-degree burn wounds debridement and treatment by actinidin enzyme immobilized on electrospun chitosan/PEO nanofibers in rats. Biointerface Res Appl Chem 11(3):10358–10370. https://doi.org/10.33263/briac113.1035810370

    Article  CAS  Google Scholar 

  24. Peng SJ, Jin GR, Li LL, Li K, Srinivasan M, Ramakrishna S, Chen J (2016) Multi-functional electrospun nanofibres for advances in tissue regeneration, energy conversion & storage, and water treatment. Chem Soc Rev 45(5):1225–1241. https://doi.org/10.1039/c5cs00777a

    Article  CAS  Google Scholar 

  25. Liu YW, Ma QL, Yang M, Dong XT, Yang Y, Wang JX, Yu WS, Liu GX (2016) Flexible hollow nanofibers: Novel one-pot electrospinning construction, structure and tunable luminescence-electricity-magnetism trifunctionality. Chem Eng J 284:831–840. https://doi.org/10.1016/j.cej.2015.09.030

    Article  CAS  Google Scholar 

  26. Cacciotti I, Calderone M, Bianco A (2013) Tailoring the properties of electrospun PHBV mats: Co-solution blending and selective removal of PEO. Eur Polym J 49(10):3210–3222. https://doi.org/10.1016/j.eurpolymj.2013.06.024

    Article  CAS  Google Scholar 

  27. Bianco A, Calderone M, Cacciotti I (2013) Electrospun PHBV/PEO co-solution blends: microstructure, thermal and mechanical properties. Mater Sci Eng C Mater Biol Appl 33(3):1067–1077. https://doi.org/10.1016/j.msec.2012.11.030

    Article  CAS  Google Scholar 

  28. Xue HJ, Sun XP, Bi JW, Wang TY, Han J, Ma QL, Han L, Dong XT (2015) Facile electrospinning construction and characteristics of coaxial nanobelts with simultaneously tunable magnetism and color-tuned photoluminescence bifunctionality. J Mater Sci-Mater Electron 26(11):8774–8783. https://doi.org/10.1007/s10854-015-3557-3

    Article  CAS  Google Scholar 

  29. Tian J, Ma QL, Dong XT, Yang M, Yang Y, Wang JX, Yu WS, Liu GX (2015) Flexible composite nanobelts: facile electrospinning construction, structure and color-tunable photoluminescence. J Mater Sci-Mater Electron 26(11):8413–8420. https://doi.org/10.1007/s10854-015-3509-y

    Article  CAS  Google Scholar 

  30. Cacciotti I, House JN, Mazzuca C, Valentini M, Madau F, Palleschi A, Straffi P, Nanni F (2015) Neat and GNPs loaded natural rubber fibers by electrospinning: Manufacturing and characterization. Mater Des 88:1109–1118. https://doi.org/10.1016/j.matdes.2015.09.054

    Article  CAS  Google Scholar 

  31. Cacciotti I, Fortunati E, Puglia D, Kenny JM, Nanni F (2014) Effect of silver nanoparticles and cellulose nanocrystals on electrospun poly(lactic) acid mats: morphology, thermal properties and mechanical behavior. Carbohydr Polym 103:22–31. https://doi.org/10.1016/j.carbpol.2013.11.052

    Article  CAS  Google Scholar 

  32. Lu XF, Wang C, Wei Y (2009) One-dimensional composite nanomaterials: synthesis by electrospinning and their applications. Small 5(21):2349–2370. https://doi.org/10.1002/smll.200900445

    Article  CAS  Google Scholar 

  33. Dandekar MP, Itankar SG, Kondawar SB, Nandanwar DV, Koinkar P (2018) Photoluminescent electrospun europium complex Eu(TTA)(3)phen embedded polymer blends nanofibers. Opt Mater 85:483–490. https://doi.org/10.1016/j.optmat.2018.09.019

    Article  CAS  Google Scholar 

  34. Yu WS, Ma QL, Li XL, Dong XT, Wang JX, Liu GX (2014) One-pot coaxial electrospinning fabrication and properties of magnetic-luminescent bifunctional flexible hollow nanofibers. Mater Lett 120:126–129. https://doi.org/10.1016/j.matlet.2014.01.076

    Article  CAS  Google Scholar 

  35. Bi F, Dong XT, Wang JX, Liu GX (2015) Tuned magnetism-luminescence bifunctionality simultaneously assembled into flexible Janus nanofiber. Rsc Adv 5(17):12571–12577. https://doi.org/10.1039/c4ra10022k

    Article  CAS  Google Scholar 

  36. Sun B, Long YZ, Chen ZJ, Liu SL, Zhang HD, Zhang JC, Han WP (2014) Recent advances in flexible and stretchable electronic devices via electrospinning. J Mater Chem C 2(7):1209–1219. https://doi.org/10.1039/c3tc31680g

    Article  CAS  Google Scholar 

  37. Zang LL, Ma J, Lv DW, Liu QL, Jiao WL, Wang PP (2017) A core-shell fiber-constructed pH-responsive nanofibrous hydrogel membrane for efficient oil/water separation. J Mater Chem A 5(36):19398–19405. https://doi.org/10.1039/c7ta05148d

    Article  CAS  Google Scholar 

  38. Wang Y, Wang BX, Wang QF, Di JC, Miao SD, Yu JH (2019) Amino-functionalized porous nanofibrous membranes for simultaneous removal of oil and heavy-metal ions from wastewater. Acs Appl Mater Inter 11(1):1672–1679. https://doi.org/10.1021/acsami.8b18066

    Article  CAS  Google Scholar 

  39. Yan X, Xiao X, Au C, Mathur S, Huang L, Wang Y, Zhang Z, Zhu Z, Kipper MJ, Tang J, Chen J (2021) Electrospinning nanofibers and nanomembranes for oil/water separation. J Mater Chem A 9(38):21659–21684. https://doi.org/10.1039/d1ta05873h

    Article  CAS  Google Scholar 

  40. Peng C, Shang MM, Li GG, Hou ZY, Geng DL, Lin J (2012) Electrospinning synthesis and luminescence properties of one-dimensional La-9.33(SiO4)(6)O-2: Ln(3+) (Ln = Ce, Eu, Tb) microfibers. Dalton T 41(16):4780–4788. https://doi.org/10.1039/c2dt12220k

    Article  CAS  Google Scholar 

  41. Anbia M, Sheykhi S (2013) Preparation of multi-walled carbon nanotube incorporated MIL-53-Cu composite metal-organic framework with enhanced methane sorption. J Ind Eng Chem 19(5):1583–1586. https://doi.org/10.1016/j.jiec.2013.01.026

    Article  CAS  Google Scholar 

  42. Lee M, Ojha GP, Oh HJ, Kim T, Kim HY (2020) Copper//terbium dual metal organic frameworks incorporated side-by-side electrospun nanofibrous membrane: A novel tactics for an efficient adsorption of particulate matter and luminescence property. J Colloid Interf Sci 578:155–163. https://doi.org/10.1016/j.jcis.2020.05.113

    Article  CAS  Google Scholar 

  43. Li YK (2011) High performance oxygen sensing nanofibrous membranes of Eu(III) complex/polystyrene prepared by electrospinning. Spectrochimica Acta Part A 79(2):356–360. https://doi.org/10.1016/j.saa.2011.03.012

    Article  CAS  Google Scholar 

  44. Zhang XP, Wen SP, Hu S, Zhang LQ, Liu L (2010) Electrospinning preparation and luminescence properties of Eu(TTA)(3)phen/polystyrene composite nanofibers. J Rare Earth 28(3):333–339. https://doi.org/10.1016/s1002-0721(09)60108-3

    Article  CAS  Google Scholar 

  45. Liu SS, Zhang XB, Shao H, Xu J, Chen FY, Feng Y (2012) Preparation of MoS2 nanofibers by electrospinning. Mater Lett 73:223–225. https://doi.org/10.1016/j.matlet.2012.01.024

    Article  CAS  Google Scholar 

  46. Yu HQ, Wang HD, Li Y, Zhou L, Wu YB, Chen BJ, Li P (2014) Electrospinning preparation and luminescence properties of terbium complex/polymer composite fibers. J Nanosci Nanotechno 14(5):3914–3918. https://doi.org/10.1166/jnn.2014.8028

    Article  CAS  Google Scholar 

  47. Sheppard MI, Thibault DH (1990) Default soil solid/liquid partition coefficients, Kds, for four major soil types: a compendium. Health phys 59(4):471–482

    CAS  Google Scholar 

  48. Sun SS, Wang Z, Wu XW, Zhang JH, Li CJ, Yin SY, Chen L, Pan M, Su CY (2018) ESIPT-modulated emission of lanthanide complexes: different energy-transfer pathways and multiple responses. Chem-Eur J 24(40):10091–10098. https://doi.org/10.1002/chem.201802010

    Article  CAS  Google Scholar 

  49. Chen X, Sun TY, Wang F (2020) Lanthanide-based luminescent materials for waveguide and lasing. Chem- Asian J 15(1):21–33. https://doi.org/10.1002/asia.201901447

    Article  CAS  Google Scholar 

  50. Rino L, Simoes W, Santos G, Fonseca FJ, Andrade AM, Deichmann VAF, Akcelrud L, Pereira L (2008) Photo and electroluminescence behavior of Tb(ACAC)(3)phen complex used as emissive layer on organic light emitting diodes. J Non-Cryst Solids 354(47–51):5326–5327. https://doi.org/10.1016/j.jnoncrysol.2008.09.022

    Article  CAS  Google Scholar 

  51. She XL, Yuan F, Zhan TR, Sun J, Zou YH (2020) Synthesis and photoluminescence study of flexible PMMA/Eu and Tb complex nanotube arrays. Opt Lasers Eng. https://doi.org/10.1016/j.optlaseng.2019.105829

    Article  Google Scholar 

  52. Bunzli JCG (2006) Benefiting from the unique properties of lanthanide ions. Accounts Chem Res 39(1):53–61. https://doi.org/10.1021/ar0400894

    Article  CAS  Google Scholar 

  53. Armelao L, Quici S, Barigelletti F, Accorsi G, Bottaro G, Cavazzini M, Tondello E (2010) Design of luminescent lanthanide complexes: From molecules to highly efficient photo-emitting materials. Coordin Chem Rev 254(5–6):487–505. https://doi.org/10.1016/j.ccr.2009.07.025

    Article  CAS  Google Scholar 

  54. Erkarslan U, Donmez A, Kara H, Aygun M, Coban MB (2018) Synthesis, structure and photoluminescence performance of a new Er3+-cluster-based 2D coordination polymer. J Cluster Sci 29(6):1177–1183. https://doi.org/10.1007/s10876-018-1434-y

    Article  CAS  Google Scholar 

  55. Coban MB, Erkarslan U, Oylumluoglu G, Aygun M, Kara H (2016) Hydrothermal synthesis, crystal structure and Photoluminescent properties; 3D Holmium(III) coordination polymer. Inorg Chimica Acta 447:87–91. https://doi.org/10.1016/j.ica.2016.03.038

    Article  CAS  Google Scholar 

  56. Shi JH, Wang YX, Huang LJ, Lu P, Sun QY, Wang Y, Tang JG, Belfiore LA, Kipper MJ (2019) Polyvinylpyrrolidone nanofibers encapsulating an anhydrous preparation of fluorescent SiO2-Tb3+ nanoparticles. Nanomaterials 9(4):510. https://doi.org/10.3390/nano9040510

    Article  CAS  Google Scholar 

  57. Zhang H, Song HW, Dong B, Han LL, Pan GH, Bai X, Fan L, Lu SZ, Zhao HF, Wang F (2008) Electrospinning preparation and luminescence properties of europium complex/polymer composite fibers. J Phys Chem C 112(25):9155–9162. https://doi.org/10.1021/jp7115005

    Article  CAS  Google Scholar 

  58. Binnemans K (2015) Interpretation of europium(III) spectra. Coordin Chem Rev 295:1–45. https://doi.org/10.1016/j.ccr.2015.02.015

    Article  CAS  Google Scholar 

  59. Georgieva I, Trendafilova N, Zahariev T, Danchova N, Gutzov S (2018) Theoretical insight in highly luminescent properties of Eu(III) complex with phenanthroline. J Lumin 202:192–205. https://doi.org/10.1016/j.jlumin.2018.05.045

    Article  CAS  Google Scholar 

  60. Shi QS, Zhao YX, Hu B, Fu YL, Liang YR, Xie YL (2017) Electrospinning preparation and properties of Tb (TTA)(3)(TPPO)(2)/PANI/PVP electrical-luminescence bifunctional nanofibers. Mater Lett 208:3–6. https://doi.org/10.1016/j.matlet.2017.05.060

    Article  CAS  Google Scholar 

  61. Wang XZ, Tang JG, Xu QS, Shen WF, Wang Y, Liu JX, Wang YX, Huang LJ, Jiao JQ, Wang D, Song Y, Belfiore LA (2015) Fluorescent polymeric aggregates induced by Eu3+ ions and their surface morphologies. Opt Mater 46:28–33. https://doi.org/10.1016/j.optmat.2015.03.050

    Article  CAS  Google Scholar 

  62. Zairov R, Shamsutdinova N, Podyachev S, Sudakova S, Gimazetdinova G, Rizvanov I, Syakaev V, Babaev V, Amirov R, Mustafina A (2016) Structure impact in antenna effect of novel upper rim substituted tetra-1,3-diketone calix 4 arenes on Tb(III) green and Yb(III) NIR-luminescence. Tetrahedron 72(19):2447–2455. https://doi.org/10.1016/j.tet.2016.03.068

    Article  CAS  Google Scholar 

  63. Brito HF, Malta OL, Menezes JFS (2000) Luminescent properties of diketonates of trivalent europium with dimethyl sulfoxide. J Alloys Compd 303:336–339. https://doi.org/10.1016/s0925-8388(00)00604-6

    Article  Google Scholar 

  64. Chen J, Selvin PR (2000) Synthesis of 7-amino-4-trifluoromethyl-2-(1H)-quinolinone and its use as an antenna molecule for luminescent europium polyaminocarboxylates chelates. J Photoch Photobio A 135(1):27–32. https://doi.org/10.1016/S1010-6030(00)00280-X

    Article  CAS  Google Scholar 

  65. Whan RE, Crosby GA (1962) Luminescence studies of rare earth complexes: Benzoylacetonate and dibenzoylmethide chelates. J Mol Spectrosc 8(1–6):315–327. https://doi.org/10.1016/0022-2852(62)90031-0

    Article  CAS  Google Scholar 

  66. Crosby GA, Whan RE, Freeman JJ (1962) Spectroscopic studies of rare earth chelates. J Phys Chem 66(12):2493–2499. https://doi.org/10.1021/j100818a041

    Article  CAS  Google Scholar 

  67. Yang YS, Gong ML, Li YY, Lei HY, Wu SL (1994) Effects of the structure of ligands and their Ln3+ complexes on the luminescence of the central Ln3+ ions. J Alloys Compd 207:112–114. https://doi.org/10.1016/0925-8388(94)90189-9

    Article  Google Scholar 

  68. Hasegawa Y, Wada Y, Yanagida S (2004) Strategies for the design of luminescent lanthanide(III) complexes and their photonic applications. J Photoch Photobio C- -Photochem Rev 5(3):183–202. https://doi.org/10.1016/j.jphotochemrev.2004.10.003

    Article  CAS  Google Scholar 

  69. Kodaira CA, Brito HF, Malta OL, Serra OA (2003) Luminescence and energy transfer of the europium (III) tungstate obtained via the Pechini method. J Lumin 101(1–2):11–21. https://doi.org/10.1016/s0022-2313(02)00384-8

    Article  CAS  Google Scholar 

  70. Feng R, Jiang F-L, Wu M-Y, Chen L, Yan C-F, Hong M-C (2010) Structures and photoluminescent properties of the lanthanide coordination complexes with hydroxyquinoline carboxylate ligands. Cryst Growth Des 10(5):2306–2313. https://doi.org/10.1021/cg100026d

    Article  CAS  Google Scholar 

  71. Latva M, Takalo H, Mukkala VM, Matachescu C, RodriguezUbis JC, Kankare J (1997) Correlation between the lowest triplet state energy level of the ligand and lanthanide(III) luminescence quantum yield. J Lumin 75(2):149–169. https://doi.org/10.1016/s0022-2313(97)00113-0

    Article  CAS  Google Scholar 

  72. Susumu S, Masanobu W (1970) Relations between intramolecular energy transfer efficiencies and triplet state energies in rare earth Î2-diketone chelates. Bull Chem Soc Jpn 43:1995–1962. https://doi.org/10.1246/bcsj.43.1955

    Article  Google Scholar 

  73. Zou J-P, Luo S-L, Li M-J, Tang X-H, Xing Q-J, Peng Q, Guo G-C (2010) Syntheses, crystal structures, and magnetic and luminescent properties of a series of lanthanide coordination polymers with chelidamic acid ligand. Polyhedron 29(13):2674–2679. https://doi.org/10.1016/j.poly.2010.06.008

    Article  CAS  Google Scholar 

  74. Wu M-F, Wang M-S, Guo S-P, Zheng F-K, Chen H-F, Jiang X-M, Liu G-N, Guo G-C, Huang J-S (2011) Photoluminescent and magnetic properties of a series of lanthanide coordination polymers with 1H-tetrazolate-5-formic acid. Cryst Growth Des 11(2):372–381. https://doi.org/10.1021/cg100817s

    Article  CAS  Google Scholar 

  75. Aita K, Temma T, Kuge Y, Saji H (2007) Development of a novel neodymium compound for in vivo fluorescence imaging. Luminescence 22(5):455–461. https://doi.org/10.1002/bio.984

    Article  CAS  Google Scholar 

  76. Andrews M, Laye RH, Harding LP, Pope SJA (2008) Quinoxaline sensitised lanthanide ion luminescence: Syntheses, spectroscopy and X-ray crystal structure of Na{1,4,7-tris (N-diethyl)carbamoylmethyl -1,4,7,10-tetraazacyclododecane -10-(2-methylquinoxaline)}I-3 C7H8. Polyhedron 27(11):2365–2371. https://doi.org/10.1016/j.poly.2008.04.010

    Article  CAS  Google Scholar 

  77. Archer RD, Chen HY, Thompson LC (1998) Synthesis, characterization, and luminescence of europium(III) Schiff base complexes. Inorg Chem 37(8):2089. https://doi.org/10.1021/ic960244d

    Article  CAS  Google Scholar 

  78. Buenzli J-CG, Chauvin A-S, Kim HK, Deiters E, Eliseeva SV (2010) Lanthanide luminescence efficiency in eight- and nine-coordinate complexes: Role of the radiative lifetime. Coordin Chem Rev 254(21–22):2623–2633. https://doi.org/10.1016/j.ccr.2010.04.002

    Article  CAS  Google Scholar 

  79. Song LM, Wang Q, Tang DH, Liu XH, Zhen Z (2007) Crystal structure and near-infrared luminescence properties of novel binuclear erbium and erbium-ytterbium cocrystalline complexes. New J Chem 31(4):506–511. https://doi.org/10.1039/b616422f

    Article  CAS  Google Scholar 

  80. Liu X, Hamon JR (2019) Recent developments in penta-, hexa- and heptadentate Schiff base ligands and their metal complexes. Coordin Chem Rev 389:94–118. https://doi.org/10.1016/j.ccr.2019.03.010

    Article  CAS  Google Scholar 

  81. Bunzli JCG (2015) On the design of highly luminescent lanthanide complexes. Coordin Chem Rev 293:19–47. https://doi.org/10.1016/j.ccr.2014.10.013

    Article  CAS  Google Scholar 

  82. Fei F, Lu T, Chen X-T, Xue Z-L (2018) Synthesis and structural characterization of metal complexes with macrocyclic tetracarbene ligands. New J Chem 42(11):9332–9332. https://doi.org/10.1039/c8nj90041h

    Article  CAS  Google Scholar 

  83. Zhang H, Song HW, Yu HQ, Li SW, Bai X, Pan GH, Dai QL, Wang T, Li WL, Lu SZ, Ren XG, Zhao HF, Kong X (2007) Modified photoluminescence properties of rare-earth complex/polymer composite fibers prepared by electrospinning. Appl Phys Lett 90(10):103103. https://doi.org/10.1063/1.2711380

    Article  CAS  Google Scholar 

  84. Yan B (2012) Recent progress in photofunctional lanthanide hybrid materials. Rsc Adv 2(25):9304–9324. https://doi.org/10.1039/c2ra20976d

    Article  CAS  Google Scholar 

  85. Hudson ZM, Sun C, Helander MG, Chang YL, Lu ZH, Wang SN (2012) Highly Efficient Blue Phosphorescence from Triarylboron-Functionalized Platinum(II) Complexes of N-Heterocyclic Carbenes. J Am Chem Soc 134(34):13930–13933. https://doi.org/10.1021/ja3048656

    Article  CAS  Google Scholar 

  86. Feng J, Zhang HJ (2013) Hybrid materials based on lanthanide organic complexes: a review. Chem Soc Rev 42(1):387–410. https://doi.org/10.1039/c2cs35069f

    Article  CAS  Google Scholar 

  87. Tan ST, Feng XM, Zhao B, Zou YP, Huang XW (2008) Preparation and photoluminescence properties of electrospun nanofibers containing PMO-PPV and Eu(ODBM)(3)phen. Mater Lett 62(15):2419–2421. https://doi.org/10.1016/j.matlet.2007.12.036

    Article  CAS  Google Scholar 

  88. Cui X, Zhang HM, Wu TF (2011) Electrospinning preparation and photoluminescence properties of erbium complex doped composite fibers. Spectrochimica Acta Part A 79(5):1998–2002. https://doi.org/10.1016/j.saa.2011.05.107

    Article  CAS  Google Scholar 

  89. Hua WK, Zhang TH, Wang M, Zhu YD, Wang XF (2019) Hierarchically structural PAN/UiO-66-(COOH)(2) nanofibrous membranes for effective recovery of Terbium(III) and Europium(III) ions and their photoluminescence performances. Chem Eng J 370:729–741. https://doi.org/10.1016/j.cej.2019.03.255

    Article  CAS  Google Scholar 

  90. Zhu SL, Nie LH (2021) Progress in fabrication of one-dimensional catalytic materials by electrospinning technology. J Ind Eng Chem 93:28–56. https://doi.org/10.1016/j.jiec.2020.09.016

    Article  CAS  Google Scholar 

  91. Xue JJ, Wu T, Dai YQ, Xia YN (2019) Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem Rev 119(8):5298–5415. https://doi.org/10.1021/acs.chemrev.8b00593

    Article  CAS  Google Scholar 

  92. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253. https://doi.org/10.1016/s0266-3538(03)00178-7

    Article  CAS  Google Scholar 

  93. Jiang SH, Chen YM, Duan GG, Mei CT, Greiner A, Agarwal S (2018) Electrospun nanofiber reinforced composites: a review. Polym Chem 9(20):2685–2720. https://doi.org/10.1039/c8py00378e

    Article  CAS  Google Scholar 

  94. Zhang BA, Kang FY, Tarascon JM, Kim JK (2016) Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage. Prog Mater Sci 76:319–380. https://doi.org/10.1016/j.pmatsci.2015.08.002

    Article  CAS  Google Scholar 

  95. Tang CY, Liu HQ (2008) Cellulose nanofiber reinforced poly(vinyl alcohol) composite film with high visible light transmittance. Compos Part A-Appl S 39(10):1638–1643. https://doi.org/10.1016/j.compositesa.2008.07.005

    Article  CAS  Google Scholar 

  96. Zhao WC, Shao HF, Yu G, Hou YJ, Wang SH (2018) The coordination and luminescence of the Eu(III) complexes with the polymers (PMMA, PVP). Polymers 10(5):508. https://doi.org/10.3390/polym10050508

    Article  CAS  Google Scholar 

  97. Li WZ, Tao Y, An GH, Yan PF, Li YX, Li GM (2017) One-dimensional luminescent composite nanofibers of Eu(TFI)(3)TPPO/PVP prepared by electrospinning. Dyes Pigments 146:47–53. https://doi.org/10.1016/j.dyepig.2017.06.056

    Article  CAS  Google Scholar 

  98. Wang SW, Xie GB, Zhang JJ, Zhang S, Li TJ (2018) Structure, thermal and luminescence properties of Eu/Tb(BA)(3)phen/PAN fibers fabricated by electrospinning. Opt Mater 78:445–451. https://doi.org/10.1016/j.optmat.2018.02.020

    Article  CAS  Google Scholar 

  99. Cacciotti I, Bianco A, Pezzotti G, Gusmano G (2011) Synthesis, thermal behaviour and luminescence properties of rare earth-doped titania nanofibers. Chem Eng J 166(2):751–764. https://doi.org/10.1016/j.cej.2010.07.008

    Article  CAS  Google Scholar 

  100. Mudra E, Brunckova H, Streckova M, Sopcak T, Sebek M, Durisin J, Girman V, Dusza J (2016) Preparation and characterization of ceramic nanofibers based on lanthanum tantalates. J Sol-Gel Sci Techn 78(2):322–330. https://doi.org/10.1007/s10971-016-3969-4

    Article  CAS  Google Scholar 

  101. Bianco A, Cacciotti I, Fragala ME, Lamastra FR, Speghini A, Piccinelli F, Malandrino G, Gusmano G (2010) Eu-doped Titania nanofibers: processing, thermal behaviour and luminescent properties. J Nanosci Nanotechnol 10(8):5183–5190. https://doi.org/10.1166/jnn.2010.2215

    Article  CAS  Google Scholar 

  102. Yu H, Yu A, Li Y, Song Y, Wu Y, Sheng C, Chen B (2016) Energy transfer processes in electrospun LaOCl:Ce/Tb nanofibres. J Alloys Compd 683:256–262. https://doi.org/10.1016/j.jallcom.2016.05.048

    Article  CAS  Google Scholar 

  103. Cacciotti I, Bianco A, Pezzotti G, Gusmano G (2011) Terbium and ytterbium-doped titania luminescent nanofibers by means of electrospinning technique. Mater Chem Phys 126(3):532–541. https://doi.org/10.1016/j.matchemphys.2011.01.034

    Article  CAS  Google Scholar 

  104. Jia CW, Xie EQ, Peng AH, Jiang R, Ye F, Lin HF, Xu T (2006) Photoluminescence and energy transfer of terbium doped titania film. Thin Solid Films 496(2):555–559. https://doi.org/10.1016/j.tsf.2005.08.378

    Article  CAS  Google Scholar 

  105. Zhang YH, Zhang HX, Xu YX, Wang YG (2003) Europium doped nanocrystalline titanium dioxide: preparation, phase transformation and photocatalytic properties. J Mater Chem 13(9):2261–2265. https://doi.org/10.1039/b305538h

    Article  CAS  Google Scholar 

  106. Mezzi A, Kaciulis S, Cacciotti I, Bianco A, Gusmano G, Lamastra FR, Fragalà ME (2010) Structure and composition of electrospun titania nanofibres doped with Eu. Surf Interface Anal 42(6–7):572–575. https://doi.org/10.1002/sia.3275

    Article  CAS  Google Scholar 

  107. Yu H, Song H, Pan G, Li S, Liu Z, Bai X, Wang T, Lu S, Zhao H (2007) Preparation and luminescent properties of europium-doped yttria fibers by electrospinning. J Lumin 124(1):39–44. https://doi.org/10.1016/j.jlumin.2006.01.360

    Article  CAS  Google Scholar 

  108. Pascariu P, Homocianu M, Cojocaru C, Samoila P, Airinei A, Suchea M (2019) Preparation of La doped ZnO ceramic nanostructures by electrospinning-calcination method: Effect of La3+ doping on optical and photocatalytic properties. Appl Surf Sci 476:16–27. https://doi.org/10.1016/j.apsusc.2019.01.077

    Article  CAS  Google Scholar 

  109. Liu Z, Shen L, He X, Pun EYB, Lin H (2021) Rare-earth functioned Bi2WO6 nanofibers via electrospinning: Boosted catalytic performance and contact-free temperature monitoring on degradation process. Colloid Interfac Sci 44:100494. https://doi.org/10.1016/j.colcom.2021.100494

    Article  CAS  Google Scholar 

  110. Wang YP, Shi SY, Dong Q, Xu CH, Zhu SL, Zhang XQ, Chow YT, Wang XQ, Zhang GH, Zhu LY, Xu D (2021) Electrospun lanthanum-doped barium titanate ceramic fibers with excellent dielectric performance. Mater Charact 172:110859. https://doi.org/10.1016/j.matchar.2020.110859

    Article  CAS  Google Scholar 

  111. Li X, Chen Y, Qian Q, Liu X, Xiao L, Chen Q (2012) Preparation and photoluminescence characteristics of Tb-, Sm- and Dy-doped Y2O3 nanofibers by electrospinning. J Lumin 132(1):81–85. https://doi.org/10.1016/j.jlumin.2011.07.003

    Article  CAS  Google Scholar 

  112. Ji XL, Li B, Jiang SC, Dong DW, Zhang HJ, Jing XB, Jiang BZ (2000) Luminescent properties of organic-inorganic hybrid monoliths containing rare-earth complexes. J Non-Cryst Solids 275(1–2):52–58. https://doi.org/10.1016/S0022-3093(00)00247-7

    Article  Google Scholar 

  113. Xi X, Ma QL, Dong XT, Li D, Yu WS, Wang JX, Liu GX (2018) Electrospinning assembly of 1D peculiar Janus nanofiber into 2D anisotropic electrically conductive array membrane synchronously endued with tuned superparamagnetism and color-tunable luminescence. J Mater Sci-Mater El 29(12):10284–10300. https://doi.org/10.1007/s10854-018-9082-4

    Article  CAS  Google Scholar 

  114. Shao H, Yu W, Ma Q, Wang X, Dong X, Liu Z, Wang J, Liu G, Chang L (2017) Assembly of 1D coaxial nanoribbons into 2D multicolor luminescence array membrane endowed with tunable anisotropic electrical conductivity and magnetism via electrospinning. Rsc Adv 7(52):32850–32860. https://doi.org/10.1039/c7ra03209a

    Article  CAS  Google Scholar 

  115. Jiao MM, Guo N, Lu W, Jia YC, Lv WZ, Zhao Q, Shao BQ, You HP (2013) Tunable blue-green-emitting Ba3LaNa(PO4)(3)F:Eu2+, Tb3+ phosphor with energy transfer for near-UV white LEDs. Inorg Chem 52(18):10340–10346. https://doi.org/10.1021/ic401033u

    Article  CAS  Google Scholar 

  116. Huang CH, Chen TM (2011) A novel single-composition trichromatic white-light Ca3Y(GaO)(3)(BO3)(4):Ce3+, Mn2+, Tb3+ phosphor for UV-light emitting diodes. J Phys Chem C 115(5):2349–2355. https://doi.org/10.1021/jp107856d

    Article  CAS  Google Scholar 

  117. Zhang HB, Shan XC, Ma ZJ, Zhou LJ, Zhang MJ, Lin P, Hu SM, Ma E, Li RF, Du SW (2014) A highly luminescent chameleon: fine-tuned emission trajectory and controllable energy transfer. J Mater Chem C 2(8):1367–1371. https://doi.org/10.1039/c3tc31624f

    Article  CAS  Google Scholar 

  118. Shang MM, Fan J, Zhang Y, Lian HZ, Lin J (2015) White-light generation and full-color in single-phase garnet-based phosphors. Inorg Chem Commun 52:73–76. https://doi.org/10.1016/j.inoche.2015.01.003

    Article  CAS  Google Scholar 

  119. Huang W, Sun L, Zheng ZW, Su JH, Tian H (2015) Colour-tunable fluorescence of single molecules based on the vibration induced emission of phenazine. Chem Commun 51(21):4462–4464. https://doi.org/10.1039/c4cc09613d

    Article  CAS  Google Scholar 

  120. Ko HY, Lee J, Lee YS, Gu HN, Ali BA, Al-Khedhairy AA, Heo H, Choa S, Kim S (2015) Bioimaging of the microRNA-294 expression-dependent color change in cells by a dual fluorophore-based molecular beacon. Chem Commun 51(11):2159–2161. https://doi.org/10.1039/c4cc08898k

    Article  CAS  Google Scholar 

  121. Wang LY, Dong XT, Gai GQ, Zhao L (2014) Electrospinning fabrication of color-tunable flexible composite nanofibers containing lanthanide ions. J Mater Sci-Mater El 25(4):1633–1638. https://doi.org/10.1007/s10854-014-1776-7

    Article  CAS  Google Scholar 

  122. Sarmanova OE, Burikov SA, Laptinskiy KA, Kotova OD, Filippova EA, Dolenko TA (2020) In vitro temperature sensing with up-conversion NaYF4:Yb3+/Tm3+-based nanocomposites: Peculiarities and pitfalls. Spectrochimica Acta Part A 241:118627. https://doi.org/10.1016/j.saa.2020.118627

    Article  CAS  Google Scholar 

  123. Kong QL, Wang JX, Dong XT, Yu WS, Liu GX (2013) Synthesis and luminescence properties of LaOCl:Eu3+ nanostructures via the combination of electrospinning with chlorination technique. J Mater Sci-Mater El 24(12):4745–4756. https://doi.org/10.1007/s10854-013-1469-7

    Article  CAS  Google Scholar 

  124. Xu YX, Li Z, Liu XP, Luo YJ, Qian QR, Huang BQ, Xiao LR, Chen QH (2017) Electrospun LaOCl:Eu3+, Ce4+ nanofibers with color-tunable fluorescence between red and orange. J Mater Sci-Mater El 28(12):8596–8600. https://doi.org/10.1007/s10854-017-6583-5

    Article  CAS  Google Scholar 

  125. Zuo XG, Wang Y, Wei L, Lv XS, Fu YB, Li J, Zhang YY, Wang XP, Liu B, Yang YG (2021) Luminescence properties and energy transfer of La3Ga5SiO14:Eu3+, Tb3+ phosphors. CrystEngComm 23(23):4194–4204. https://doi.org/10.1039/d1ce00487e

    Article  CAS  Google Scholar 

  126. Li GG, Hou ZY, Peng C, Wang WX, Cheng ZY, Li CX, Lian HZ, Lin J (2010) Electrospinning derived one-dimensional LaOCl: Ln(3+) (Ln = Eu/Sm, Tb, Tm) nanofibers, nanotubes and microbelts with multicolor-tunable emission properties. Adv Funct Mater 20(20):3446–3456. https://doi.org/10.1002/adfm.201001114

    Article  CAS  Google Scholar 

  127. Li FF, Qin N, Bao DH (2019) Two step charge transfer process for photoluminescence of Eu3+/Gd3+ codoped Bi2Ti2O7 pyrochlore dielectric thin films. Opt Mater 96:109288. https://doi.org/10.1016/j.optmat.2019.109288

    Article  CAS  Google Scholar 

  128. Liu BT, Mo QH, Zhu JL, Hou ZP, Peng LL, Tu YJ, Wang QY (2016) Synthesis of Fe and N Co-doped Bi2Ti2O7 nanofiber with enhanced photocatalytic activity under visible light irradiation. Nanoscale Res Lett 11:391. https://doi.org/10.1186/s11671-016-1610-7

    Article  CAS  Google Scholar 

  129. Xu M, Ge W, Shi J, Li J, Tian Y (2021) Color-tunable and multiple upconversion luminescence of Bi2Ti2O7:Yb3+/ Eu3+ nanofibers via electrospinning process. J Lumin 237:118135. https://doi.org/10.1016/j.jlumin.2021.118135

    Article  CAS  Google Scholar 

  130. Lun K, Ma QL, Yang M, Dong XT, Yang Y, Wang JX, Yu WS, Liu GX (2015) Electricity-magnetism and color-tunable trifunction simultaneously assembled into one strip of flexible microbelt via electrospinning. Chem Eng J 279:231–240. https://doi.org/10.1016/j.cej.2015.05.022

    Article  CAS  Google Scholar 

  131. Lun K, Ma QL, Yang M, Dong XT, Yang Y, Wang JX, Yu WS, Liu GX (2015) Color-tunable luminescence nanofibers endowed with simultaneously tuned electricity-magnetism performance. J Mater Sci-Mater El 26(8):5994–6003. https://doi.org/10.1007/s10854-015-3175-0

    Article  CAS  Google Scholar 

  132. Xi X, Yu WS, Ma QL, Li D, Dong XT, Wang JX, Liu GX (2018) Using special Janus nanobelt as constitutional unit to construct anisotropic conductive array membrane for concurrently affording color-tunable luminescence and superparamagnetism. Rsc Adv 8(55):31608–31617. https://doi.org/10.1039/c8ra06283h

    Article  CAS  Google Scholar 

  133. Baleizao C, Nagl S, Schaferling M, Berberan-Santos MN, Wolfbeis OS (2008) Dual fluorescence sensor for trace oxygen and temperature with unmatched range and sensitivity. Anal Chem 80(16):6449–6457. https://doi.org/10.1021/ac801034p

    Article  CAS  Google Scholar 

  134. Lei BF, Li B, Zhang H, Zhang LM, Li WL (2007) Synthesis, characterization, and oxygen sensing properties of functionalized mesoporous SBA-15 and MCM-41 with a covalently linked Ruthenium(II) complex. J Phys Chem C 111(30):11291–11301. https://doi.org/10.1021/jp070008w

    Article  CAS  Google Scholar 

  135. Ren K, Wang J, Jia HL (2017) Electrospinning fibrous films doped with iridium complexes for high performance oxygen sensing: Synthesis and characterization. Sensors Actuat B-Chem 240:697–708. https://doi.org/10.1016/j.snb.2016.09.033

    Article  CAS  Google Scholar 

  136. Wang XG, Yang YY, He BJ (2017) Improving oxygen sensing performance of Ir(III) complexes with fluorine atoms: Synthesis, characterization and sensing behavior of their electrospinning fibrous films. Sensors Actuat B-Chem 241:957–966. https://doi.org/10.1016/j.snb.2016.11.001

    Article  CAS  Google Scholar 

  137. Wang YH, Li B, Zhang LM, Zuo QH, Li P, Zhang J, Su ZM (2011) High-performance oxygen sensors based on Eu-III complex/polystyrene composite nanofibrous membranes prepared by electrospinning. ChemPhysChem 12(2):349–355. https://doi.org/10.1002/cphc.201000884

    Article  CAS  Google Scholar 

  138. Wang YH, Li B, Liu YH, Zhang LM, Zuo QH, Shi LF, Su ZM (2009) Highly sensitive oxygen sensors based on Cu(I) complex-polystyrene composite nanofibrous membranes prepared by electrospinning. Chem Commun 39:5868–5870. https://doi.org/10.1039/b910305h

    Article  CAS  Google Scholar 

  139. Sun JL, Hu G, She Q, Zuo ZH, Guo L (2012) Nanofibers doped with a novel red-emitting Europium complex: Synthesis, characterization, photophysical property and sensing activity toward molecular oxygen. Spectrochimica Acta Part A 91:192–197. https://doi.org/10.1016/j.saa.2012.01.074

    Article  CAS  Google Scholar 

  140. Zhang LM, Li B, Su ZM, Yue SM (2010) Novel rare-earth(III)-based water soluble emitters for Fe(III) detection. Sensors Actuat B-Chem 143(2):595–599. https://doi.org/10.1016/j.snb.2009.09.056

    Article  CAS  Google Scholar 

  141. Li SG, Wu T, Tao DL, Zhang KY (2015) Europium complexes with large conjugation plane in diamine ligands: Synthesis, characterization, photophysical features and oxygen sensing performance. Opt Mater 40:81–90. https://doi.org/10.1016/j.optmat.2014.11.051

    Article  CAS  Google Scholar 

  142. Li SG, Zhao XY (2011) Oxygen sensing nanofibers doped with red-emitting Eu(III) complex: Synthesis, characterization, mechanism, and sensing performance. Synthetic Met 161(9–10):737–742. https://doi.org/10.1016/j.synthmet.2011.01.023

    Article  CAS  Google Scholar 

  143. Lin SZ, Dong XT, Wang JX, Liu GX, Yu WS, Jia RK (2010) Fabrication of Eu(III) complex doped nanofibrous membranes and their oxygen-sensing properties. Spectrochimica Acta Part A 77(4):885–889. https://doi.org/10.1016/j.saa.2010.08.025

    Article  CAS  Google Scholar 

  144. Chen X, Zhong ZM, Li Z, Jiang YQ, Wang XR, Wong KY (2002) Characterization of ormosil film for dissolved oxygen-sensing. Sensors Actuat B-Chem 87(2):233–238. https://doi.org/10.1016/s0925-4005(02)00241-1

    Article  Google Scholar 

  145. Si ZJ, Li XN, Li XY, Zhang HJ (2009) Synthesis, photophysical properties, and theoretical studies on pyrrole-containing bromo Re(I) complex. J Organomet Chem 694(23):3742–3748. https://doi.org/10.1016/j.jorganchem.2009.07.036

    Article  CAS  Google Scholar 

  146. Lamansky S, Djurovich P, Murphy D, Abdel-Razzaq F, Lee HE, Adachi C, Burrows PE, Forrest SR, Thompson ME (2001) Highly phosphorescent bis-cyclometalated iridium complexes: Synthesis, photophysical characterization, and use in organic light emitting diodes. J Am Chem Soc 123(18):4304–4312. https://doi.org/10.1021/ja003693s

    Article  CAS  Google Scholar 

  147. Zhang LM, Li B (2009) A series of Eu(III) emitters with a novel triphenylamine-derived beta-diketone ligand. J Lumin 129(11):1304–1308. https://doi.org/10.1016/j.jlumin.2009.06.015

    Article  CAS  Google Scholar 

  148. Feng N, Xie J, Zhang DW (2010) Synthesis, characterization, photophysical and oxygen-sensing properties of a novel europium(III) complex. Spectrochimica Acta Part A 77(1):292–296. https://doi.org/10.1016/j.saa.2010.05.025

    Article  CAS  Google Scholar 

  149. Terra IAA, Sanfelice RC, Scagion VP, Tomazio NB, Mendonca CR, Nunes LAO, Correa DS (2019) Polyvinylpyrrolidone electrospun nanofibers doped with Eu3+: Fabrication, characterization, and application in gas sensors. J Appl Polym Sci. https://doi.org/10.1002/app.47775

    Article  Google Scholar 

  150. Song HW, Yu HQ, Pan GH, Bai X, Dong B, Zhang XT, Hark SK (2008) Electrospinning preparation, structure, and photoluminescence properties of YBO3: EU3+ nanotubes and nanowires. Chem Mater 20(14):4762–4767. https://doi.org/10.1021/cm8007864

    Article  CAS  Google Scholar 

  151. Itankar SG, Dandekar MP, Kondawar SB, Bahirwar BM (2017) Eu3+-doped polystyrene and polyvinylidene fluoride nanofibers made by electrospinning for photoluminescent fabric designing. Luminescence 32(8):1535–1540. https://doi.org/10.1002/bio.3356

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the (1) Natural Scientific Foundation of China (Grant No. 51878361, 52070104); Natural Scientific Foundation of Shandong Province (Grant No. ZR2019MEM048); (2) State Key Project of International Cooperation Research (2016YFE0110800, 2017YFE0108300); the National Program for Introducing Talents of Discipline to Universities (“111” plan); 1st class discipline program of Materials Science of Shandong Province, The Double-Hundred Foreign Expert Program of Shandong Province(2019-2021).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanxin Wang, Linjun Huang or Jianguo Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Gregory Rutledge.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Wang, Y., Huang, L. et al. A review of lanthanide-based fluorescent nanofiber membranes by electrospinning and their applications. J Mater Sci 57, 3892–3922 (2022). https://doi.org/10.1007/s10853-021-06758-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06758-5

Navigation