Skip to main content
Log in

Facile synthesis of flower-like CQDs/S-Bi4O5Br2 composites as a highly efficient visible-light response photocatalyst for ciprofloxacin degradation

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The flower-like CQDs/S-Bi4O5Br2 composites photocatalyst with high visible-light response is prepared by adjusting bismuth-rich, S-doped, and introducing carbon quantum dots (CQDs) into the bismuth oxybromide (BiOBr). Particularly, the prepared C10/S6–Bi4O5Br2 composite shows the highest degradation efficiency for the ciprofloxacin (CIP) under visible-light irradiation with the apparent rate constants k of 0.03798 min−1, which is 26.3 times and 10.1 times higher than that of BiOBr and Bi4O5Br2, respectively. The sulfur doping leads to the increase of the specific surface area and decreases of the band gap but retains the original flower-like morphology of Bi4O5Br2. Compared to the pure Bi4O5Br2, CQDs/Bi4O5Br2, and S-Bi4O5Br2, the CQDs introduction and S-doping can improve both of the light absorption range and intensity, as well as the charge transfer efficiency for the C10/S6–Bi4O5Br2 composites. Furthermore, because of the combination of the CQDs and S doped for the Bi4O5Br2 composites, the separation efficiency of photo-generated carriers is improved with the recombination rate greatly reduced.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References:

  1. Rashid J, Abbas A, Chang LC et al (2019) Butterfly cluster like lamellar BiOBr/TiO2 nanocomposite for enhanced sunlight photocatalytic mineralization of aqueous ciprofloxacin. Sci Total Environ 665:668–677. https://doi.org/10.1016/j.scitotenv.2019.02.145

    Article  CAS  Google Scholar 

  2. Ren X, Zhang X, Guo R et al (2021) Hollow mesoporous g-C3N4/Ag2CrO4 photocatalysis with direct Z-scheme: excellent degradation performance for antibiotics and dyes. Sep Purif Technol 270:118797. https://doi.org/10.1016/j.seppur.2021.118797

    Article  CAS  Google Scholar 

  3. Cheng H, Huang B, Dai Y (2014) Engineering BiOX (X = Cl, Br, I) nanostructures for highly efficient photocatalytic applications. Nanoscale 6:2009–2026. https://doi.org/10.1039/c3nr05529a

    Article  CAS  Google Scholar 

  4. Ge M, Li Q, Cao C et al (2017) One-dimensional TiO2 nanotube photocatalysts for solar water splitting. Adv Sci 4:1600152. https://doi.org/10.1002/advs.201600152

    Article  CAS  Google Scholar 

  5. Liu J, Wang G, Li B, Ma X, Hu Y, Cheng H (2021) A high-efficiency mediator-free Z-scheme Bi2MoO6/AgI heterojunction with enhanced photocatalytic performance. Sci Total Environ 784:147227–147227. https://doi.org/10.1016/j.scitotenv.2021.147227

    Article  CAS  Google Scholar 

  6. Han X, Kuang Q, Jin M, Xie Z, Zheng L (2009) Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J Am Chem Soc 131:3152–3153. https://doi.org/10.1021/ja8092373

    Article  CAS  Google Scholar 

  7. Neatu S, Antonio Macia-Agullo J, Concepcion P, Garcia H (2014) Gold-copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by water. J Am Chem Soc 136:15969–15976. https://doi.org/10.1021/ja506433k

    Article  CAS  Google Scholar 

  8. Dai Y, Li C, Shen Y et al (2018) Efficient solar-driven hydrogen transfer by bismuth-based photocatalyst with engineered basic sites. J Am Chem Soc 140:16711–16719. https://doi.org/10.1021/jacs.8b09796

    Article  CAS  Google Scholar 

  9. Di J, Xia J, Ji M et al (2016) Advanced photocatalytic performance of graphene-like BN modified BiOBr flower-like materials for the removal of pollutants and mechanism insight. Appl Catal B Environ 183:254–262. https://doi.org/10.1016/j.apcatb.2015.10.036

    Article  CAS  Google Scholar 

  10. Ye L, Jin X, Leng Y, Su Y, Xie H, Liu C (2015) Synthesis of black ultrathin BiOCl nanosheets for efficient photocatalytic H2 production under visible light irradiation. J Power Sour 293:409–415. https://doi.org/10.1016/j.jpowsour.2015.05.101

    Article  CAS  Google Scholar 

  11. Liu J, Li R, Zu X et al (2019) Photocatalytic conversion of nitrogen to ammonia with water on triphase interfaces of hydrophilic-hydrophobic composite Bi4O5Br 2/ZIF-8. Chem Eng J 371:796–803. https://doi.org/10.1016/j.cej.2019.03.283

    Article  CAS  Google Scholar 

  12. Kong XY, Lee WQ, Mohamed AR, Chai S-P (2019) Effective steering of charge flow through synergistic inducing oxygen vacancy defects and p-n heterojunctions in 2D/2D surface-engineered Bi2WO6/BiOI cascade: towards superior photocatalytic CO2 reduction activity. Chem Eng J 372:1183–1193. https://doi.org/10.1016/j.cej.2019.05.001

    Article  CAS  Google Scholar 

  13. Wang Q, Wang W, Zhong L, Liu D, Cao X, Cui F (2018) Oxygen vacancy-rich 2D/2D BiOCl-g-C3N4 ultrathin heterostructure nanosheets for enhanced visible-light-driven photocatalytic activity in environmental remediation. Appl Catal B Environ 220:290–302. https://doi.org/10.1016/j.apcatb.2017.08.049

    Article  CAS  Google Scholar 

  14. Wang C-Y, Zeng Q, Zhu G (2021) Novel S-doped BiOBr nanosheets for the enhanced photocatalytic degradation of bisphenol A under visible light irradiation. Chemosphere 268:128854–128854. https://doi.org/10.1016/j.chemosphere.2020.128854

    Article  CAS  Google Scholar 

  15. Jin X, Lv C, Zhou X et al (2019) A bismuth rich hollow Bi4O5Br 2 photocatalyst enables dramatic CO2 reduction activity. Nano Energy 64:103955. https://doi.org/10.1016/j.nanoen.2019.103955

    Article  CAS  Google Scholar 

  16. Liu N, Xie H, Li J, Zhao Y, Wang N (2020) Synthesis and high visible light photocatalytic activity of ternary brookite-g-C3N4-BiOBr composite. NANO 15:2050042. https://doi.org/10.1142/s1793292020500459

    Article  CAS  Google Scholar 

  17. Di J, Xia J, Li H, Guo S, Dai S (2017) Bismuth oxyhalide layered materials for energy and environmental applications. Nano Energy 41:172–192. https://doi.org/10.1016/j.nanoen.2017.09.008

    Article  CAS  Google Scholar 

  18. Wang S, Hai X, Ding X et al (2017) Light-switchable oxygen vacancies in ultrafine Bi5O7Br nanotubes for boosting solar-driven nitrogen fixation in pure water. Adv Mater 29:1701774. https://doi.org/10.1002/adma.201701774

    Article  CAS  Google Scholar 

  19. Wang J, Yu Y, Zhang L (2013) Highly efficient photocatalytic removal of sodium pentachlorophenate with Bi3O4Br under visible light. Appl Catal B Environ 136:112–121. https://doi.org/10.1016/j.apcatb.2013.02.009

    Article  CAS  Google Scholar 

  20. Di J, Xia J, Ji M et al (2015) Controllable synthesis of Bi4O5Br 2 ultrathin nanosheets for photocatalytic removal of ciprofloxacin and mechanism insight. J Mater Chem A 3:15108–15118. https://doi.org/10.1039/c5ta02388b

    Article  CAS  Google Scholar 

  21. Li R, Xie F, Liu J, Zhang C, Zhang X, Fan C (2019) Room-temperature hydrolysis fabrication of BiOBr/Bi12O17Br 2 Z-Scheme photocatalyst with enhanced resorcinol degradation and NO removal activity. Chemosphere 235:767–775. https://doi.org/10.1016/j.chemosphere.2019.06.231

    Article  CAS  Google Scholar 

  22. Zhou L, Zhuang Z, Zhao H, Lin M, Zhao D, Mai L (2017) Intricate hollow structures: controlled synthesis and applications in energy storage and conversion. Adv Mater 29:1602914. https://doi.org/10.1002/adma.201602914

    Article  CAS  Google Scholar 

  23. Lu F, Cai W, Zhang Y (2008) ZnO hierarchical micro/nanoarchitectures: solvothermal synthesis and structurally enhanced photocatalytic performance. Adv Func Mater 18:1047–1056. https://doi.org/10.1002/adfm.200700973

    Article  CAS  Google Scholar 

  24. Zhu L-P, Liao G-H, Bing N-C, Wang L-L, Yang Y, Xie H-Y (2010) Self-assembled 3D BiOCl hierarchitectures: tunable synthesis and characterization. CrystEngComm 12:3791–3796. https://doi.org/10.1039/c0ce00038h

    Article  CAS  Google Scholar 

  25. Yang L, Liang L, Wang L, Zhu J, Gao S, Xia X (2019) Accelerated photocatalytic oxidation of carbamazepine by a novel 3D hierarchical protonated g-C3N4/BiOBr heterojunction: performance and mechanism. Appl Surf Sci 473:527–539. https://doi.org/10.1016/j.apsusc.2018.12.180

    Article  CAS  Google Scholar 

  26. Rosales M, Zoltan T, Yadarola C, Mosquera E, Gracia F, Garcia A (2019) The influence of the morphology of 1D TiO2 nanostructures on photogeneration of reactive oxygen species and enhanced photocatalytic activity. J Mol Liq 281:59–69. https://doi.org/10.1016/j.molliq.2019.02.070

    Article  CAS  Google Scholar 

  27. Zhuang H, Zhang Y, Chu Z et al (2016) Synergy of metal and nonmetal dopants for visible-light photocatalysis: a case-study of Sn and N co-doped TiO2. Phys Chem Chem Phys 18:9636–9644. https://doi.org/10.1039/c6cp00580b

    Article  CAS  Google Scholar 

  28. Abdelraheem WHM, Patil MK, Nadagouda MN, Dionysiou DD (2019) Hydrothermal synthesis of photoactive nitrogen- and boron- codoped TiO2 nanoparticles for the treatment of bisphenol A in wastewater: synthesis, photocatalytic activity, degradation byproducts and reaction pathways. Appl Catal B Environ 241:598–611. https://doi.org/10.1016/j.apcatb.2018.09.039

    Article  CAS  Google Scholar 

  29. Liu P, Liu Y, Ye W, Ma J, Gao D (2016) Flower-like N-doped MoS2 for photocatalytic degradation of RhB by visible light irradiation. Nanotechnology 27:225403. https://doi.org/10.1088/0957-4484/27/22/225403

    Article  CAS  Google Scholar 

  30. Jiang G-H, Li X, Wei Z, Jiang T-T, Du X-X, Chen W-X (2015) Effects of N and/or S doping on structure and photocatalytic properties of BiOBr crystals. Acta Metallurgica Sinica-English Letters 28:460–466. https://doi.org/10.1007/s40195-015-0220-1

    Article  CAS  Google Scholar 

  31. Wang W, Cheng L, Liu W (2014) Biological applications of carbon dots. Sci China Chem 57:522–539. https://doi.org/10.1007/s11426-014-5064-4

    Article  CAS  Google Scholar 

  32. Shafafi S, Habibi-Yangjeh A, Feizpoor S, Ghosh S, Maiyalagan T (2020) Carbon dots and Bi4O5Br 2 adhered on TiO2 nanoparticles: Impressively boosted photocatalytic efficiency for removal of pollutants under visible light. Sep Purif Technol 250:117179. https://doi.org/10.1016/j.seppur.2020.117179

    Article  CAS  Google Scholar 

  33. Ji M, Zhang Z, Xia J et al (2018) Enhanced photocatalytic performance of carbon quantum dots/BiOBr composite and mechanism investigation. Chin Chem Lett 29:805–810. https://doi.org/10.1016/j.cclet.2018.05.002

    Article  CAS  Google Scholar 

  34. Wang F, Wang Y, Feng Y et al (2018) Novel ternary photocatalyst of single atom-dispersed silver and carbon quantum dots co-loaded with ultrathin g-C3N4 for broad spectrum photocatalytic degradation of naproxen. Appl Catal B Environ 221:510–520. https://doi.org/10.1016/j.apcatb.2017.09.055

    Article  CAS  Google Scholar 

  35. Li H, He X, Kang Z et al (2010) Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angewandte Chemie Int Edn 49:4430–4434. https://doi.org/10.1002/anie.200906154

    Article  CAS  Google Scholar 

  36. Duo F, Wang Y, Fan C, Zhang X, Wang Y (2016) Enhanced visible light photocatalytic activity and stability of CQDs/BiOBr composites: the upconversion effect of CQDs. J Alloy Compd 685:34–41. https://doi.org/10.1016/j.jallcom.2016.05.259

    Article  CAS  Google Scholar 

  37. Hong Y, Meng Y, Zhang G et al (2016) Facile fabrication of stable metal-free CQDs/g-C3N4 heterojunctions with efficiently enhanced visible-light photocatalytic activity. Sep Purif Technol 171:229–237. https://doi.org/10.1016/j.seppur.2016.07.025

    Article  CAS  Google Scholar 

  38. Wu K, Song S, Wu H, Guo J, Zhang L (2020) Carbon quantum dots modified Bi2WO6 nanoflowers for enhancing photocatalytic activity: an experimental and DFT study. Micro Nano Lett 15:317–322. https://doi.org/10.1049/mnl.2019.0702

    Article  CAS  Google Scholar 

  39. Que Q, Xing Y, He Z, Yang Y, Yin X, Que W (2017) Bi2O3/Carbon quantum dots heterostructured photocatalysts with enhanced photocatalytic activity. Mater Lett 209:220–223. https://doi.org/10.1016/j.matlet.2017.07.115

    Article  CAS  Google Scholar 

  40. Yi F, Ma J, Lin C et al (2020) Insights into the enhanced adsorption/photocatalysis mechanism of a Bi4O5Br 2/g-C3N4 nanosheet. J Alloy Compd 821:153557. https://doi.org/10.1016/j.jallcom.2019.153557

    Article  CAS  Google Scholar 

  41. Zhao M, Fu Y, Ma H et al (2015) Study of the sulfurized BiO2CO3 as efficient visible-light induced photocatalyst. J Mater Sci Mater Electron 26:7882–7888. https://doi.org/10.1007/s10854-015-3439-8

    Article  CAS  Google Scholar 

  42. Cheng G, Xiong J, Stadler FJ (2013) Facile template-free and fast refluxing synthesis of 3D desertrose-like BiOCl nanoarchitectures with superior photocatalytic activity. New J Chem 37:3207–3213. https://doi.org/10.1039/c3nj00413a

    Article  CAS  Google Scholar 

  43. Di J, Xia J, Ji M et al (2015) Carbon quantum dots modified BiOCl ultrathin nanosheets with enhanced molecular oxygen activation ability for broad spectrum photocatalytic properties and mechanism insight. ACS Appl Mater Interf 7:20111–20123. https://doi.org/10.1021/acsami.5b05268

    Article  CAS  Google Scholar 

  44. Yang S, Chen C, Liu L, Zhu L, Xu X (2017) Facile fabrication of micro-floriated AgBr/Bi2O3 as highly efficient visible-light photocatalyst. Mater Res Bull 92:29–38. https://doi.org/10.1016/j.materresbull.2017.03.055

    Article  CAS  Google Scholar 

  45. Zhu S, Meng Q, Wang L et al (2013) Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angewandte Chemie Int Edn 52:3953–3957. https://doi.org/10.1002/anie.201300519

    Article  CAS  Google Scholar 

  46. Feizpoor S, Habibi-Yangjeh A, Ahadzadeh I, Yubuta K (2019) Oxygen-rich TiO2 decorated with C-Dots: highly efficient visible-light-responsive photocatalysts in degradations of different contaminants. Adv Powder Technol 30:1183–1196. https://doi.org/10.1016/j.apt.2019.03.014

    Article  CAS  Google Scholar 

  47. Cai T, Liu Y, Wang L et al (2017) Silver phosphate-based Z-Scheme photocatalytic system with superior sunlight photocatalytic activities and anti-photocorrosion performance. Appl Catal B Environ 208:1–13. https://doi.org/10.1016/j.apcatb.2017.02.065

    Article  CAS  Google Scholar 

  48. Zhang J, Liu Q, Wang J et al (2021) Facile preparation of carbon quantum dots/TiO2 composites at room temperature with improved visible-light photocatalytic activity. J Alloy Compd 869:159389. https://doi.org/10.1016/j.jallcom.2021.159389

    Article  CAS  Google Scholar 

  49. Fu S, Yuan W, Liu X et al (2020) A novel 0D/2D WS2/BiOBr heterostructure with rich oxygen vacancies for enhanced broad-spectrum photocatalytic performance. J Colloid Interf Sci 569:150–163. https://doi.org/10.1016/j.jcis.2020.02.077

    Article  CAS  Google Scholar 

  50. Zhao J, Ji M, Di J et al (2017) Synthesis of g-C3N4/Bi4O5Br 2 via reactable ionic liquid and its cooperation effect for the enhanced photocatalytic behavior towards ciprofloxacin degradation. J Photochem Photobiol Chem 347:168–176. https://doi.org/10.1016/j.jphotochem.2017.07.023

    Article  CAS  Google Scholar 

  51. Zhang M, Lai C, Li B et al (2019) Rational design 2D/2D BiOBr/CDs/g-C3N4 Z-scheme heterojunction photocatalyst with carbon dots as solid-state electron mediators for enhanced visible and NIR photocatalytic activity: Kinetics, intermediates, and mechanism insight. J Catal 369:469–481. https://doi.org/10.1016/j.jcat.2018.11.029

    Article  CAS  Google Scholar 

  52. Chen M, Dai Y, Guo J, Yang H, Liu D, Zhai Y (2019) Solvothermal synthesis of biochar@ZnFe2O4/BiOBr Z-scheme heterojunction for efficient photocatalytic ciprofloxacin degradation under visible light. Appl Surf Sci 493:1361–1367. https://doi.org/10.1016/j.apsusc.2019.04.160

    Article  CAS  Google Scholar 

  53. Huang M, Li J, Su W et al (2020) Oriented construction of S-doped, exposed 001 facet BiOBr nanosheets with abundant oxygen vacancies and promoted visible-light-driven photocatalytic performance. CrystEngComm 22:7684–7692. https://doi.org/10.1039/D0CE01187H

    Article  CAS  Google Scholar 

  54. Tang L, Lv Z-q, Xue Y-c et al (2019) MIL-53(Fe) incorporated in the lamellar BiOBr: promoting the visible-light catalytic capability on the degradation of rhodamine B and carbamazepine. Chem Eng J 374:975–982. https://doi.org/10.1016/j.cej.2019.06.019

    Article  CAS  Google Scholar 

  55. Zhao C, Liang Y, Li W et al (2017) BiOBr/BiOCl/carbon quantum dot microspheres with superior visible light-driven photocatalysis. RSC Adv 7:52614–52620. https://doi.org/10.1039/C7RA10344A

    Article  CAS  Google Scholar 

  56. Azami M, Haghighi M, Allahyari S (2018) Sono-precipitation of Ag2CrO4-C composite enhanced by carbon-based materials (AC, GO, CNT and C3N4) and its activity in photocatalytic degradation of acid orange 7 in water. Ultrason Sonochem 40:505–516. https://doi.org/10.1016/j.ultsonch.2017.07.043

    Article  CAS  Google Scholar 

  57. Li YY, He T-Y, Dai R-R et al (2019) Bifunctional gyroidal MOFs: highly efficient Lewis base and Lewis acid catalysts. Chem Asian J 14:3682–3687. https://doi.org/10.1002/asia.201900853

    Article  CAS  Google Scholar 

  58. Wu K, Song S, Wu H, Guo J, Zhang L (2020) Facile synthesis of Bi2WO6/C3N4/Ti3C2 composite as Z-scheme photocatalyst for efficient ciprofloxacin degradation and H2 production. Appl Catal A General 608:117869. https://doi.org/10.1016/j.apcata.2020.117869

    Article  CAS  Google Scholar 

  59. Liang Y, Wang X, An W, Li Y, Hu J, Cui W (2019) A g-C3N4@ppy-rGO 3D structure hydrogel for efficient photocatalysis. Appl Surf Sci 466:666–672. https://doi.org/10.1016/j.apsusc.2018.10.059

    Article  CAS  Google Scholar 

  60. Song S, Wu K, Wu H, Guo J, Zhang L (2020) Synthesis of Z-scheme multi-shelled ZnO/AgVO3 spheres as photocatalysts for the degradation of ciprofloxacin and reduction of chromium(VI). J Mater Sci 55:4987–5007.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was financially supported by the Scientific Research Plan Project of the Education Department of the Hubei Province [grant number B2019377], the Open Project of Key Laboratory of Green Chemical Process of Ministry of Education [grant number GCP20190205].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Linfeng Zhang or Jia Guo.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Handling Editor: Joshua Tong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2743 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weng, P., Cai, Q., Wu, H. et al. Facile synthesis of flower-like CQDs/S-Bi4O5Br2 composites as a highly efficient visible-light response photocatalyst for ciprofloxacin degradation. J Mater Sci 57, 1977–1993 (2022). https://doi.org/10.1007/s10853-021-06661-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06661-z

Navigation