Skip to main content
Log in

Study of the sulfurized (BiO)2CO3 as efficient visible-light induced photocatalyst

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, the sulfurized (BiO)2CO3 heterostructures were synthesized using a facile liquid-phase sulfurization strategy and characterized by XRD, SEM, FT-IR, XPS, UV–Vis DRS and PL techniques. It is found that sulfurization shifts slightly XRD diffraction peaks toward to lower Bragg angle, enhances significantly the optical absorption and reduces the recombination of photogenerated electrons and holes. Based on the experimental results, it is considered that novel Bi2S3/(BiO)2CO3 heterostructures with S doping (oxygen atoms substituted by sulfur) were successfully constructed. The as-obtained photocatalysts showed excellent photocatalytic activity for degradation of reactive brilliant blue (KN-R), as compared with that of pure (BiO)2CO3 under sunlight irradiation. The enhanced photocatalytic performance may be ascribed to the role of Bi2S3/(BiO)2CO3 heterostructure and S doping, which causes high absorption efficiency of light and efficient separation of photoinduced carriers in sulfurized (BiO)2CO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95(1), 69–74 (1995)

    Article  Google Scholar 

  2. Y. Li, X. Fang, N. Koshizaki, T. Sasaki, L. Li, S. Gao, Y. Shimizu, Y. Bando, D. Golberg, Adv. Funct. Mater. 19(15), 2467–2472 (2009)

    Article  Google Scholar 

  3. Y. Li, T. Sasaki, Y. Shimizu, N. Koshizaki, Small 4(12), 2286–2291 (2008)

    Article  Google Scholar 

  4. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 292, 1897–1899 (2001)

    Article  Google Scholar 

  5. Z.W. Pan, Z.R. Dai, Z.L. Wang, Science 291, 1947–1949 (2001)

    Article  Google Scholar 

  6. D.D. Lin, H. Wu, R. Zhang, W. Pan, Chem. Mater. 21(19), 3479–3484 (2009)

    Article  Google Scholar 

  7. P. Sharma, A. Gupta, K.V. Rao, F.J. Owens, R. Sharma, R. Ahuja, J.M. Guillen, B. Johansson, G.A. Gehring, Nat. Mater. 2(10), 673–677 (2003)

    Article  Google Scholar 

  8. K. Hayat, M.A. Gondal, M.M. Khaled, Z.H. Yamani, S. Ahmed, J. Hazard. Mater. 186(2), 1226–1233 (2011)

    Article  Google Scholar 

  9. D. Vernardou, H. Drosos, E. Spanakis, E. Koudoumas, C. Savvakis, N. Katsarakis, J. Mater. Chem. 21(2), 513–517 (2011)

    Article  Google Scholar 

  10. Z. Zhu, L. Zhang, J. Li, J. Du, Y. Zhang, J. Zhou, Ceram. Int. 39(7), 7461–7465 (2013)

    Article  Google Scholar 

  11. A. Kudo, K. Omori, H. Kato, J. Am. Chem. Soc. 121(49), 11459–11467 (1999)

    Article  Google Scholar 

  12. S. Tokunaga, H. Kato, A. Kudo, Chem. Mater. 13(12), 4624–4628 (2001)

    Article  Google Scholar 

  13. Z. Chen, L.W. Qian, J. Zhu, Y.P. Yuan, X.F. Qian, CrystEngComm 12(7), 2100–2106 (2010)

    Article  Google Scholar 

  14. L. Zhang, W. Wang, L. Zhou, H. Xu, Small 3(9), 1618–1625 (2007)

    Article  Google Scholar 

  15. A.M. Kusainova, P. Lightfoot, W. Zhou, S.Y. Stefanovich, A.V. Mosunov, V.A. Dolgikh, Chem. Mater. 13(12), 4731–4737 (2001)

    Article  Google Scholar 

  16. F.J. Maile, G. Pfaff, P. Reynders, Prog. Org. Coat. 54(3), 150–163 (2005)

    Article  Google Scholar 

  17. J. Henle, P. Simon, A. Frenzel, S. Scholz, S. Kaskel, Chem. Mater. 19(3), 366–373 (2007)

    Article  Google Scholar 

  18. X. Zhang, Z.H. Ai, F.L. Jia, L.Z. Zhang, J. Phys. Chem. C 112(3), 747–753 (2008)

    Article  Google Scholar 

  19. W.Y. Su, J. Wang, Y.X. Huang, W.J. Wang, L. Wu, X.X. Wang, P. Liu, Scr. Mater. 62(6), 345–348 (2010)

    Article  Google Scholar 

  20. F. Chen, H.Q. Liu, S. Bagwasi, X.X. Shen, J.L. Zhang, J. Photochem. Photobiol. A 215(1), 76–80 (2010)

    Article  Google Scholar 

  21. M. Shang, W.Z. Wang, L. Zhang, J. Hazard. Mater. 167(1–3), 803–809 (2009)

    Article  Google Scholar 

  22. J.D. Grice, Can. Mineral. 40(2), 693–698 (2002)

    Article  Google Scholar 

  23. Y. Zheng, F. Duan, M. Chen, Y. Xie, J. Mol. Catal. A 317(1–2), 34–40 (2010)

    Article  Google Scholar 

  24. J. Cao, X. Li, H. Lin, S.F. Chen, X.L. Fu, J. Hazard. Mater. 239–240, 316–324 (2012)

    Article  Google Scholar 

  25. Y.Y. Liu, Z.Y. Wang, B.B. Huang, K.S. Yang, X.Y. Qin, Y. Dai, Appl. Surf. Sci. 257(1), 172–175 (2010)

    Article  Google Scholar 

  26. Y. Zheng, F. Duan, M.Q. Chen, Y. Xie, J. Mol. Catal. A Chem. 317(1–2), 34–40 (2010)

    Article  Google Scholar 

  27. T.Y. Zhao, J.T. Zai, M. Zou, Q. Zou, Y.Z. Su, K.X. Wang, X.F. Qian, CrystEngComm 13, 4010–4017 (2011)

    Article  Google Scholar 

  28. P. Madhusudan, J.R. Ran, J. Zhang, J.G. Yu, G. Liu, Appl. Catal. B Environ. 110(2), 286–295 (2011)

    Article  Google Scholar 

  29. L. Chen, S.F. Yin, S.L. Luo, R. Huang, Q. Zhang, T. Hong, P.C.T. Au, Ind. Eng. Chem. Res. 51(19), 6760–6768 (2012)

    Article  Google Scholar 

  30. F. Dong, X. Feng, Y.X. Zhang, C.F. Gao, Z.B. Wu, RSC Adv. 5, 11714–11723 (2015)

    Article  Google Scholar 

  31. N. Liang, J.T. Zai, M. Xu, Q. Zhu, X. Wei, X.F. Qian, J. Mater. Chem. A 2, 4208–4216 (2014)

    Article  Google Scholar 

  32. S.J. Peng, L.L. Li, H.T. Tan, Y.Z. Wu, R. Cai, H. Yu, X. Huang, P.N. Zhu, S. Ramakrishna, M. Srinivasan, Q.Y. Yan, J. Mater. Chem. A 1, 7630–7638 (2013)

    Article  Google Scholar 

  33. F. Dong, Q. Li, Y. Zhou, Y. Sun, H. Zhang, Z. Wu, Dalton Trans. 43(25), 9468–9480 (2014)

    Article  Google Scholar 

  34. Q. Li, X. Hao, X. Guo, F. Dong, Y. Zhang, Dalton Trans. 44(19), 8805–8811 (2015)

    Article  Google Scholar 

  35. F. Dong, Q.Y. Li, Y.J. Sun, W.K. Ho, ACS Catal. 4(12), 4341–4350 (2014)

    Article  Google Scholar 

  36. C.J. Wang, Z.W. Zhao, B. Luo, M. Fu, F. Dong, J. Nanomater. 2014, 1–10 (2014)

    Google Scholar 

  37. F. Dong, Y. Sun, M. Fu, W.K. Ho, S.C. Lee, Z. Wu, Langmuir 28, 766–773 (2012)

    Article  Google Scholar 

  38. P. Sun, Y. Jin, Y. Zhao, J. Xu, M. Chen, W. Yao, Y.F. Zhu, F. Teng, Nano 09(08), 1450094-1450104 (2014)

    Article  Google Scholar 

  39. T. Xiong, H.W. Huang, Y.J. Sun, F. Dong, J. Mater. Chem. A 3, 6118–6127 (2015)

    Article  Google Scholar 

  40. B. Kumar, H. Gong, S.Y. Chow, S. Tripathy, Y. Hua, Appl. Phys. Lett. 89(7), 071922–071923 (2006)

    Article  Google Scholar 

  41. G.E. Tobon-Zapata, S.B. Etcheverry, E.J. Baran, J. Mater. Sci. Lett. 16(8), 656–657 (1997)

    Article  Google Scholar 

  42. J. Cao, B.Y. Xu, H.L. Lin, B.D. Luo, S.F. Chen, Dalton Trans. 41, 11482–11490 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by The National Natural Science Foundation of China (21476033), Program for Liaoning Excellent Tal-ents in University (LR2014013) and Cultivation Program for Excellent Talents of Science and Technology Department of Liaoning Province (No. 201402610).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongchao Ma or Xiaoli Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, M., Fu, Y., Ma, H. et al. Study of the sulfurized (BiO)2CO3 as efficient visible-light induced photocatalyst. J Mater Sci: Mater Electron 26, 7882–7888 (2015). https://doi.org/10.1007/s10854-015-3439-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3439-8

Keywords

Navigation