Skip to main content
Log in

Epitaxial pyrolytic carbon coatings templated with defective carbon nanotube cores for structural annealing and tensile property improvement

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Thermal annealing of chemical vapor deposition (CVD)-grown carbon nanotubes (CNTs) is a practical method for reducing defects in CNTs, which is essential for promoting applications of CNTs in nanoscale or microscale materials. However, the increase in annealing temperature fails to bring noticeable improvements in the tensile properties of CNTs, implying the negative influence of carbon sublimation on the defect healing process. Here we propose a two-step annealing strategy for improving the microstructure and tensile properties of CVD-grown CNTs. This has been achieved through the epitaxial growth of pyrolytic carbon thin layers at the CNT surface and then followed by graphitization treatment at 2200 °C for 1 h. Tensile performances of two-step annealed CNTs have been investigated by in situ tests in a scanning electron microscope. The results show that the average Young’s modulus and fracture strength of two-step annealed CNTs are improved approximately by 35% and 10%, respectively, compared to those of one-step annealed CNTs. Such an enhancement can be ascribed to the well-aligned CNT walls with fewer structural defects, supported by the characterization results from transmission electron microscope, X-ray diffraction and Raman spectroscopy. The two-step annealing strategy developed in this study for improving the mechanical properties of CNTs is expected to be applicable to a practical fabrication process.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Mielke SL, Belytschko T, Schatz GC (2007) Nanoscale fracture mechanics. Annu Rev Phys Chem 58:185–209. https://doi.org/10.1146/annurev.physchem.58.032806.104502

    Article  CAS  Google Scholar 

  2. Inoue Y, Hayashi K, Karita M et al (2021) Study on the mechanical and electrical properties of twisted CNT yarns fabricated from CNTs with various diameters. Carbon 176:400–410. https://doi.org/10.1016/j.carbon.2021.01.139

    Article  CAS  Google Scholar 

  3. Shimamura Y, Oshima K, Tohgo K et al (2014) Tensile mechanical properties of carbon nanotube/epoxy composite fabricated by pultrusion of carbon nanotube spun yarn preform. Compos Part A Appl Sci Manuf 62:32–38. https://doi.org/10.1016/j.compositesa.2014.03.011

    Article  CAS  Google Scholar 

  4. Kumar M, Ando Y (2010) Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J Nanosci Nanotechnol 10:3739–3758. https://doi.org/10.1166/jnn.2010.2939

    Article  CAS  Google Scholar 

  5. Lukić B, Seo JW, Couteau E et al (2005) Elastic modulus of multi-walled carbon nanotubes produced by catalytic chemical vapour deposition. Appl Phys A 80:695–700. https://doi.org/10.1007/s00339-004-3100-5

    Article  CAS  Google Scholar 

  6. Yamamoto G, Suk JW, An J et al (2010) The influence of nanoscale defects on the fracture of multi-walled carbon nanotubes under tensile loading. Diam Relat Mater 19:748–751. https://doi.org/10.1016/j.diamond.2010.01.045

    Article  CAS  Google Scholar 

  7. Shirasu K, Kitayama S, Liu F et al (2021) Molecular dynamics simulations and theoretical model for engineering tensile properties of single-and multi-walled carbon nanotubes. Nanomaterials 11:795. https://doi.org/10.3390/nano11030795

    Article  CAS  Google Scholar 

  8. Chiang WH, Futaba DN, Yumura M, Hata K (2011) Growth control of single-walled, double-walled, and triple-walled carbon nanotube forests by a priori electrical resistance measurement of catalyst films. Carbon 49:4368–4375. https://doi.org/10.1016/j.carbon.2011.06.015

    Article  CAS  Google Scholar 

  9. Hou PX, Liu C, Cheng HM (2008) Purification of carbon nanotubes. Carbon 46:2003–2025. https://doi.org/10.1016/j.carbon.2008.09.009

    Article  CAS  Google Scholar 

  10. Shirasu K, Tamaki I, Miyazaki T et al (2017) Key factors limiting carbon nanotube strength: structural characterization and mechanical properties of multi-walled carbon nanotubes. Mech Eng J 4:17–00029. https://doi.org/10.1299/mej.17-00029

    Article  CAS  Google Scholar 

  11. Hansson J, Nylander A, Flygare M et al (2020) Effects of high temperature treatment of carbon nanotube arrays on graphite: increased crystallinity, anchoring and inter-tube bonding. Nanotechnology 31:455708. https://doi.org/10.1088/1361-6528/ab9677

    Article  CAS  Google Scholar 

  12. Chen J, Shan JY, Tsukada T et al (2007) The structural evolution of thin multi-walled carbon nanotubes during isothermal annealing. Carbon 45:274–280. https://doi.org/10.1016/j.carbon.2006.09.028

    Article  CAS  Google Scholar 

  13. Kim YA, Hayashi T, Osawa K et al (2003) Annealing effect on disordered multi-wall carbon nanotubes. Chem Phys Lett 380:319–324. https://doi.org/10.1016/j.cplett.2003.09.027

    Article  CAS  Google Scholar 

  14. Andrews R, Jacques D, Qian D, Dickey EC (2001) Purification and structural annealing of multiwalled carbon nanotubes at graphitization temperatures. Carbon 39:1681–1687. https://doi.org/10.1016/S0008-6223(00)00301-8

    Article  CAS  Google Scholar 

  15. Huang JY, Chen S, Jo SH et al (2005) Atomic-scale imaging of wall-by-wall breakdown and concurrent transport measurements in multiwall carbon nanotubes. Phys Rev Lett 94:236802. https://doi.org/10.1103/PhysRevLett.94.236802

    Article  CAS  Google Scholar 

  16. Srikanth I, Padmavathi N, Prasad PSR et al (2016) Effect of high-temperature heat treatment duration on the purity and microstructure of MWCNTs. Bull Mater Sci 39:41–46. https://doi.org/10.1007/s12034-015-0891-2

    Article  CAS  Google Scholar 

  17. Koshio A, Yudasaka M, Iijima S (2007) Disappearance of inner tubes and generation of double-wall carbon nanotubes from highly dense multiwall carbon nanotubes by heat treatment. J Phys Chem C 111:10–12. https://doi.org/10.1021/jp0672914

    Article  CAS  Google Scholar 

  18. Zhang K, Malcolm Stocks G, Zhong J (2007) Melting and premelting of carbon nanotubes. Nanotechnology 18:285703. https://doi.org/10.1088/0957-4484/18/28/285703

    Article  CAS  Google Scholar 

  19. Barber AH, Andrews R, Schadler LS, Wagner HD (2005) On the tensile strength distribution of multiwalled carbon nanotubes. Appl Phys Lett 87:1–3. https://doi.org/10.1063/1.2130713

    Article  CAS  Google Scholar 

  20. Yamamoto G, Shirasu K, Nozaka Y et al (2014) Structure-property relationships in thermally-annealed multi-walled carbon nanotubes. Carbon 66:219–226. https://doi.org/10.1016/j.carbon.2013.08.061

    Article  CAS  Google Scholar 

  21. Wei XL, Chen Q, Peng LM et al (2010) In situ measurements on individual thin carbon nanotubes using nanomanipulators inside a scanning electron microscope. Ultramicroscopy 110:182–189. https://doi.org/10.1016/j.ultramic.2009.11.007

    Article  CAS  Google Scholar 

  22. Cheng Y, Li X, Gao H et al (2020) Diameter, strength and resistance tuning of double-walled carbon nanotubes in a transmission electron microscope. Carbon 160:98–106. https://doi.org/10.1016/j.carbon.2020.01.012

    Article  CAS  Google Scholar 

  23. Peng B, Locascio M, Zapol P et al (2008) Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nat Nanotechnol 3:626–631. https://doi.org/10.1038/nnano.2008.211

    Article  CAS  Google Scholar 

  24. Salvetat JP, Kulik AJ, Bonard JM et al (1999) Elastic modulus of ordered and disordered multiwalled carbon nanotubes. Adv Mater 11:161–165. https://doi.org/10.1002/(SICI)1521-4095(199902)11:2%3c161::AID-ADMA161%3e3.0.CO;2-J

    Article  CAS  Google Scholar 

  25. Ding W, Calabri L, Kohlhaas KM et al (2007) Modulus, fracture strength, and brittle vs. plastic response of the outer shell of arc-grown multi-walled carbon nanotubes. Exp Mech 47:25–36. https://doi.org/10.1007/S11340-006-9344-6

    Article  CAS  Google Scholar 

  26. Yu MF, Lourie O, Dyer MJ et al (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287:637–640. https://doi.org/10.1126/science.287.5453.637

    Article  CAS  Google Scholar 

  27. Demczyk BG, Wang YM, Cumings J et al (2002) Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater Sci Eng A 334:173–178. https://doi.org/10.1016/S0921-5093(01)01807-X

    Article  Google Scholar 

  28. Faraji S, Stano K, Rost C et al (2014) Structural annealing of carbon coated aligned multi-walled carbon nanotube sheets. Carbon 79:113–122. https://doi.org/10.1016/j.carbon.2014.07.049

    Article  CAS  Google Scholar 

  29. Beese AM, Papkov D, Li S et al (2013) In situ transmission electron microscope tensile testing reveals structure-property relationships in carbon nanofibers. Carbon 60:246–253. https://doi.org/10.1016/j.carbon.2013.04.018

    Article  CAS  Google Scholar 

  30. Shirasu K, Yamamoto G, Hashida T (2019) How do the mechanical properties of carbon nanotubes increase? An experimental evaluation and modeling of the engineering tensile strength of individual carbon nanotubes. Mater Res Express 6:055047. https://doi.org/10.1088/2053-1591/ab069f

    Article  CAS  Google Scholar 

  31. Monthioux M, Allouche H, Jacobsen RL (2006) Chemical vapour deposition of pyrolytic carbon on carbon nanotubes. Part 3: Growth mechanisms. Carbon 44:3183–3194. https://doi.org/10.1016/j.carbon.2006.07.001

    Article  CAS  Google Scholar 

  32. Krasnikov DV, Kuznetsov VL, Romanenko AI, Shmakov AN (2018) Side reaction in catalytic CVD growth of carbon nanotubes: surface pyrolysis of a hydrocarbon precursor with the formation of lateral carbon deposits. Carbon 139:105–117. https://doi.org/10.1016/j.carbon.2018.06.033

    Article  CAS  Google Scholar 

  33. Elumeeva KV, Kuznetsov VL, Ischenko AV et al (2013) Reinforcement of CVD grown multi-walled carbon nanotubes by high temperature annealing. AIP Adv 3:112101. https://doi.org/10.1063/1.4829272

    Article  CAS  Google Scholar 

  34. Muniz FTL, Miranda MAR, Morilla Dos Santos C, Sasaki JM (2016) The Scherrer equation and the dynamical theory of X-ray diffraction. Acta Crystallogr Sect A Found Adv 72:385–390. https://doi.org/10.1107/S205327331600365X

    Article  CAS  Google Scholar 

  35. Pope CG (1997) X-ray diffraction and the bragg equation. J Chem Educ 74:129–131. https://doi.org/10.1021/ed074p129

    Article  CAS  Google Scholar 

  36. Faraji S, Yildiz O, Rost C et al (2017) Radial growth of multi-walled carbon nanotubes in aligned sheets through cyclic carbon deposition and graphitization. Carbon 111:411–418. https://doi.org/10.1016/j.carbon.2016.10.012

    Article  CAS  Google Scholar 

  37. Velasquez M, Batiot-Dupeyrat C, Gallego J, Santamaria A (2014) Chemical and morphological characterization of multi-walled-carbon nanotubes synthesized by carbon deposition from an ethanol-glycerol blend. Diam Relat Mater 50:38–48. https://doi.org/10.1016/j.diamond.2014.08.015

    Article  CAS  Google Scholar 

  38. Caņado LG, Takai K, Enoki T et al (2006) General equation for the determination of the crystallite size la of nanographite by Raman spectroscopy. Appl Phys Lett 88:163106. https://doi.org/10.1063/1.2196057

    Article  CAS  Google Scholar 

  39. Kuznetsov VL, Bokova-Sirosh SN, Moseenkov SI et al (2014) Raman spectra for characterization of defective CVD multi-walled carbon nanotubes. Phys status solidi 251:2444–2450. https://doi.org/10.1002/pssb.201451195

    Article  CAS  Google Scholar 

  40. Lehman JH, Terrones M, Mansfield E et al (2011) Evaluating the characteristics of multiwall carbon nanotubes. Carbon 49:2581–2602. https://doi.org/10.1016/j.carbon.2011.03.028

    Article  CAS  Google Scholar 

  41. Shirasu K, Asaoka M, Miyazaki T et al (2019) Stack-coating of multishell carbon layers templated with carbon nanotubes. Mater Today Commun 21:100608. https://doi.org/10.1016/j.mtcomm.2019.100608

    Article  CAS  Google Scholar 

  42. Ding F, Jiao K, Lin Y, Yakobson BI (2007) How evaporating carbon nanotubes retain their perfection? Nano Lett 7:681–684. https://doi.org/10.1021/nl0627543

    Article  CAS  Google Scholar 

  43. Ding F, Jiao K, Wu M, Yakobson BI (2007) Pseudoclimb and dislocation dynamics in superplastic nanotubes. Phys Rev Lett 98:075503. https://doi.org/10.1103/PhysRevLett.98.075503

    Article  CAS  Google Scholar 

  44. Huang JY, Chen S, Ren ZF et al (2006) Kink formation and motion in carbon nanotubes at high temperatures. Phys Rev Lett 97:075501. https://doi.org/10.1103/PhysRevLett.97.075501

    Article  CAS  Google Scholar 

  45. Chen MW, Zhu YB, Xia J, Wu HA (2019) Molecular insights into the initial formation of pyrolytic carbon upon carbon fiber surface. Carbon 148:307–316. https://doi.org/10.1016/j.carbon.2019.04.003

    Article  CAS  Google Scholar 

  46. Chen J, Shi T, Cai T et al (2013) Self healing of defected graphene. Appl Phys Lett 102:103107. https://doi.org/10.1063/1.4795292

    Article  CAS  Google Scholar 

  47. Kuznetsov VL, Elumeeva KV, Ishchenko AV et al (2010) Multi-walled carbon nanotubes with ppm level of impurities. Phys status solidi 247:2695–2699. https://doi.org/10.1002/pssb.201000211

    Article  CAS  Google Scholar 

  48. Hada M, Hasegawa T, Inoue H et al (2019) One-minute joule annealing enhances the thermoelectric properties of carbon nanotube yarns via the formation of graphene at the interface. ACS Appl Energy Mater 2:7700–7708. https://doi.org/10.1021/acsaem.9b01736

    Article  CAS  Google Scholar 

  49. De Silva KKH, Huang HH, Joshi R, Yoshimura M (2020) Restoration of the graphitic structure by defect repair during the thermal reduction of graphene oxide. Carbon 166:74–90. https://doi.org/10.1016/j.carbon.2020.05.015

    Article  CAS  Google Scholar 

  50. Botari T, Paupitz R, da Silva A, Autreto P, Galvao DS (2016) Graphene healing mechanisms: a theoretical investigation. Carbon 99:302–309. https://doi.org/10.1016/j.carbon.2015.11.070

    Article  CAS  Google Scholar 

  51. Klein CA (2007) Characteristic tensile strength and Weibull shape parameter of carbon nanotubes. J Appl Phys 101:124909. https://doi.org/10.1063/1.2749337

    Article  CAS  Google Scholar 

  52. Gao E, Lu W, Xu Z (2018) Strength loss of carbon nanotube fibers explained in a three-level hierarchical model. Carbon 138:134–142. https://doi.org/10.1016/j.carbon.2018.05.052

    Article  CAS  Google Scholar 

  53. Xia ZH, Guduru PR, Curtin WA (2007) Enhancing mechanical properties of multiwall carbon nanotubes via sp3 interwall bridging. Phys Rev Lett 98:245501. https://doi.org/10.1103/PhysRevLett.98.245501

    Article  CAS  Google Scholar 

  54. Santo Pietro D, Tang C, Chen C (2012) Enhancing interwall load transfer by vacancy defects in carbon nanotubes. Appl Phys Lett 100:033118. https://doi.org/10.1063/1.3678342

    Article  CAS  Google Scholar 

  55. Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53:1126–1130. https://doi.org/10.1063/1.1674108

    Article  CAS  Google Scholar 

  56. Delhaes P, Couzi M, Trinquecoste M et al (2006) A comparison between Raman spectroscopy and surface characterizations of multiwall carbon nanotubes. Carbon 44:3005–3013. https://doi.org/10.1016/j.carbon.2006.05.021

    Article  CAS  Google Scholar 

  57. Osswald S, Havel M, Gogotsi Y (2007) Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy. J Raman Spectrosc 38:728–736. https://doi.org/10.1002/jrs.1686

    Article  CAS  Google Scholar 

  58. Zhang S, Mielke SL, Khare R et al (2005) Mechanics of defects in carbon nanotubes: atomistic and multiscale simulations. Phys Rev B - Condens Matter Mater Phys 71:115403. https://doi.org/10.1103/PhysRevB.71.115403

    Article  CAS  Google Scholar 

  59. Zhu L, Wang J, Ding F (2016) The great reduction of a carbon nanotube’s mechanical performance by a few topological defects. ACS Nano 10:6410–6415. https://doi.org/10.1021/acsnano.6b03231

    Article  CAS  Google Scholar 

  60. Wilson NR, Macpherson JV (2009) Carbon nanotube tips for atomic force microscopy. Nat Nanotechnol 4:483–491. https://doi.org/10.1038/nnano.2009.154

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. T Miyazaki from the Technical Division, School of Engineering, Tohoku University, for technical assistance in TEM analysis; we thank Professors T Wada and H Kato from the Institute for Materials Research, Tohoku University, for their helpful suggestions; we thank Dr. K Takahashi from Toyota ZEV Factory for the technical assistance; we thank LINTEC OF AMERICA, INC., Nano-Science & Technology Center (NSTC), for supplying the MWCNT sheets. This work was supported by JSPS KAKENHI Grant Number JP19K14837.

Author information

Authors and Affiliations

Authors

Contributions

FL had contributed to conceptualization and methodology, and wrote the original draft; FL and TH carried out structure analysis; KS and TH were involved in writing, reviewing and editing and funding acquisition. All authors have read and agreed to the submitted version of the manuscript.

Corresponding author

Correspondence to Fan Liu.

Additional information

Handling Editor: Yaroslava Yingling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5851 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Shirasu, K. & Hashida, T. Epitaxial pyrolytic carbon coatings templated with defective carbon nanotube cores for structural annealing and tensile property improvement. J Mater Sci 56, 19015–19028 (2021). https://doi.org/10.1007/s10853-021-06523-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06523-8

Navigation