Skip to main content
Log in

Carbon nanotube/graphene nanocomposites built via surfactant-mediated colloid assembly as metal-free catalysts for the oxygen reduction reaction

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The development of composites from 1D and 2D nanocarbon building blocks, namely carbon nanotubes and graphene layers, with enhanced properties or novel functionalities is an emerging challenge in material science. Herein, we developed a colloid-based approach using surfactants and polymers to non-covalently functionalize multiwalled carbon nanotubes (MWNTs) and graphene nanoplatelets (GnPs), and to fabricate GnP@MWNT nanocomposites via an electrostatic-driven assembly process in aqueous solution. In the assembly process, two building methods were used and compared (bulk mixing and adapted layer-by-layer assembly), using surfactant and polymer/surfactant combinations as the dispersants for the initial nanomaterials. After their characterization by scanning electron microscopy, Raman spectroscopy and BET analysis, the nanocomposites were evaluated as electrocatalysts for the oxygen reduction reaction (ORR). Results show that the type of the dispersant (namely the presence of polymer) plays a more relevant role than the specific building method in almost all the ORR parameters. Further, the nanocomposites show selectivity toward the 2-electron pathway oxygen reduction for the electrochemical production of hydrogen peroxide. The development and optimization of further nanocomposite electrocatalysts can be pursued using this type of versatile and robust assembly method.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Zhang J, Terrones M, Park CR, Mukherjee R, Monthioux M, Koratkar N, Kim YS, Hurt R, Frackowiak E, Enoki T, Chen Y, Chen YS, Bianco A (2016) Carbon science in 2016: status, challenges and perspectives. Carbon 98(70):708–732. https://doi.org/10.1016/j.carbon.2015.11.060

    Article  CAS  Google Scholar 

  2. Georgakilas V, Perman JA, Tucek J, Zboril R (2015) Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, Nnanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev 115(11):4744–4822. https://doi.org/10.1021/cr500304f

    Article  CAS  Google Scholar 

  3. Tasis D, Tagmatarchis N, Georgakilas V, Prato M (2003) Soluble carbon nanotubes. Chem Eur J 9(17):4000–4008. https://doi.org/10.1002/chem.200304800

    Article  CAS  Google Scholar 

  4. Novoselov KS, Andreeva DV, Ren WC, Shan GC (2019) Graphene and other two-dimensional materials. Front Phys 14(1):13301. https://doi.org/10.1007/s11467-018-0835-6

    Article  Google Scholar 

  5. Ma RG, Zhou Y, Bi H, Yang MH, Wang JC, Liu Q, Huang FQ (2020) Multidimensional graphene structures and beyond: unique properties, syntheses and applications. Prog Mater Sci 113:100665. https://doi.org/10.1016/j.pmatsci.2020.100665

    Article  CAS  Google Scholar 

  6. Guldi DM, Menna E, Maggini M, Marcaccio M, Paolucci D, Paolucci F, Campidelli S, Prato M, Rahman GMA, Schergna S (2006) Supramolecular hybrids of [60] fullerene and single-wall carbon nanotubes. Chem Eur J 12(15):3975–3983. https://doi.org/10.1002/chem.200600114

    Article  CAS  Google Scholar 

  7. Nasibulin AG, Pikhitsa PV, Jiang H, Brown DP, Krasheninnikov AV, Anisimov AS, Queipo P, Moisala A, Gonzalez D, Lientschnig G (2007) A novel hybrid carbon material. Nat Nanotechnol 2(3):156–161. https://doi.org/10.1038/nnano.2007.37

    Article  CAS  Google Scholar 

  8. Wei T, Martin O, Chen M, Yang S, Hauke F, Hirsch A (2019) Covalent inter-carbon-allotrope architectures consisting of the endohedral fullerene Sc3N@C80 and single-walled carbon nanotubes. Angew Chem Int Ed 58(24):8058–8062. https://doi.org/10.1002/anie.201902595

    Article  CAS  Google Scholar 

  9. MacKiewicz N, Bark T, Cao B, Delaire JA, Riehl D, Ling WL, Foillard S, Doris E (2011) Fullerene-functionalized carbon nanotubes as improved optical limiting devices. Carbon 49(12):3998–4003. https://doi.org/10.1016/j.carbon.2011.05.040

    Article  CAS  Google Scholar 

  10. Dong H, Fan Z, Qian P, Ala-Nissila T, Su Y (2020) Thermal conductivity reduction in carbon nanotube by fullerene encapsulation: a molecular dynamics study. Carbon 161:800–808. https://doi.org/10.1016/j.carbon.2020.01.114

    Article  CAS  Google Scholar 

  11. Hasanzadeh A, Khataee A, Zarei M, Zhang Y (2019) Two-electron oxygen reduction on fullerene C60-carbon nanotubes covalent hybrid as a metal-free electrocatalyst. Sci Rep 9(1):13780. https://doi.org/10.1038/s41598-019-50155-7

    Article  CAS  Google Scholar 

  12. Zhang X, Zhang JW, Xiang PH, Qiao J (2018) Fabrication of graphene-fullerene hybrid by self-assembly and its application as support material for methanol electrocatalytic oxidation reaction. Appl Surf Sci 440:477–483. https://doi.org/10.1016/j.apsusc.2018.01.150

    Article  CAS  Google Scholar 

  13. Yang J, Heo M, Lee HJ, Park S-M, Kim JY, Shin HS (2011) Reduced graphene oxide (rGO)-wrapped fullerene (C60) wires. ACS Nano 5(10):8365–8371. https://doi.org/10.1021/nn203073q

    Article  CAS  Google Scholar 

  14. Zhang G, Glukhova OE (2020) New automatic method for generating atomistic models of multi-branched and arbitrary-shaped seamless junctions of carbon nanostructures. Comput Mater Sci 184:109943. https://doi.org/10.1016/j.commatsci.2020.109943

    Article  CAS  Google Scholar 

  15. Wei T, Hauke F, Andreas H (2019) Covalent inter-synthetic-carbon-allotrope hybrids. Acc Chem Res 52(8):2037–2045. https://doi.org/10.1021/acs.accounts.9b00181

    Article  CAS  Google Scholar 

  16. Tran XT, Park SS, Song S, Haider MS, Imran SM, Hussain M, Kim HT (2019) Electroconductive performance of polypyrrole/reduced graphene oxide/carbon nanotube composites synthesized via in situ oxidative polymerization. J Mater Sci 54(4):3156–3173. https://doi.org/10.1007/s10853-018-3043-4

    Article  CAS  Google Scholar 

  17. Pansri S, Noothongkaew S (2019) MWCNTs/r-GO hybrid films fabricated by layer by layer assembly for supercapacitor electrodes. J Energy Storage 22:153–156. https://doi.org/10.1016/j.est.2019.02.009

    Article  Google Scholar 

  18. Oh JY, Kim YS, Jung Y, Yang SJ, Park CR (2016) Preparation and exceptional mechanical properties of bone-mimicking size-tuned graphene oxide@carbon nanotube hybrid paper. ACS Nano 10(2):2184–2192. https://doi.org/10.1021/acsnano.5b06719

    Article  CAS  Google Scholar 

  19. Pham DT, Lee TH, Luong DH, Yao F, Ghosh A, Le VT, Kim TH, Li B, Chang J, Lee YH (2015) Carbon nanotube-bridged graphene 3D building blocks for ultrafast compact supercapacitors. ACS Nano 9(2):2018–2027. https://doi.org/10.1021/nn507079x

    Article  CAS  Google Scholar 

  20. Chen P, Xiao T-Y, Qian Y-H, Li S-S, Yu S-H (2013) A nitrogen-doped graphene/carbon nanotube nanocomposite with synergistically enhanced electrochemical activity. Adv Mater 25(23):3192–3196. https://doi.org/10.1002/adma.201300515

    Article  CAS  Google Scholar 

  21. Hong TK, Lee DW, Choi HJ, Shin HS, Kim BS (2010) Transparent, flexible conducting hybrid multilayer thin films of multiwalled carbon nanotubes with graphene nanosheets. ACS Nano 4(7):3861–3868. https://doi.org/10.1021/nn100897g

    Article  CAS  Google Scholar 

  22. Lei ZB, Shi FH, Lu L (2012) Incorporation of MnO2-coated carbon nanotubes between graphene sheets as supercapacitor electrode. ACS Appl Mater Interfaces 4(2):1058–1064. https://doi.org/10.1021/am2016848

    Article  CAS  Google Scholar 

  23. Park JS, Cho SM, Kim WJ, Park J, Yoo PJ (2011) Fabrication of graphene thin films based on layer-by-layer self-assembly of functionalized graphene nanosheets. ACS Appl Mater Interfaces 3(2):360–368. https://doi.org/10.1021/am100977p

    Article  CAS  Google Scholar 

  24. Tung VC, Chen L-M, Allen MJ, Wassei JK, Nelson K, Kaner RB, Yang Y (2009) Low-temperature solution processing of graphene−carbon nanotube hybrid materials for high-performance transparent conductors. Nano Lett 9(5):1949–1955. https://doi.org/10.1021/nl9001525

    Article  CAS  Google Scholar 

  25. Abedi M, Fangueiro R, Correia AG (2020) An effective method for hybrid CNT/GNP dispersion and its effects on the mechanical, microstructural, thermal, and electrical properties of multifunctional cementitious composites. J Nanomater. 2020:6749150. https://doi.org/10.1155/2020/6749150

    Article  CAS  Google Scholar 

  26. Huang J, Her S-C, Yang X, Zhi M (2018) Synthesis and characterization of multi-walled carbon nanotube/graphene nanoplatelet hybrid film for flexible strain sensors. Nanomaterials 8(10):786. https://doi.org/10.3390/nano8100786

    Article  CAS  Google Scholar 

  27. Coleman JN (2009) Liquid-phase exfoliation of nanotubes and graphene. Adv Funct Mater 19(23):3680–3695. https://doi.org/10.1002/adfm.200901640

    Article  CAS  Google Scholar 

  28. Fernandes RM, Abreu B, Claro B, Buzaglo M, Regev O, Furo I, Marques EF (2015) Dispersing carbon nanotubes with ionic surfactants under controlled conditions: comparisons and insight. Langmuir 31(40):10955–10965. https://doi.org/10.1021/acs.langmuir.5b02050

    Article  CAS  Google Scholar 

  29. Abreu B, Rocha J, Fernandes RMF, Regev O, Furó I, Marques EF (2019) Gemini surfactants as efficient dispersants of multiwalled carbon nanotubes: interplay of molecular parameters on nanotube dispersibility and debundling. J Colloid Interface Sci 547:69–77. https://doi.org/10.1016/j.jcis.2019.03.082

    Article  CAS  Google Scholar 

  30. Abreu B, Montero J, Buzaglo M, Regev O, Marques EF (2021) Comparative trends and molecular analysis on the surfactant-assisted dispersibility of 1D and 2D carbon materials: multiwalled nanotubes vs graphene nanoplatelets. J Mol Liq 333:116002. https://doi.org/10.1016/j.molliq.2021.116002

    Article  CAS  Google Scholar 

  31. Ferreira P, Abreu B, Freire C, Fernandes DM, Marques EF (2021) Nanocomposites prepared from carbon nanotubes and the transition metal dichalcogenides WS2 and MoS2 via surfactant-assisted dispersions as electrocatalysts for oxygen reactions. Materials 14(4):896. https://doi.org/10.3390/ma14040896

    Article  CAS  Google Scholar 

  32. Shen J, Hu Y, Qin C, Ye M (2008) Layer-by-layer self-assembly of multiwalled carbon nanotube polyelectrolytes prepared by in situ radical polymerization. Langmuir 24(8):3993–3997. https://doi.org/10.1021/la703957t

    Article  CAS  Google Scholar 

  33. Marmisollé WA, Azzaroni O (2016) Recent developments in the layer-by-layer assembly of polyaniline and carbon nanomaterials for energy storage and sensing applications from synthetic aspects to structural and functional characterization. Nanoscale 8(19):9890–9918. https://doi.org/10.1039/c5nr08326e

    Article  Google Scholar 

  34. Novaes FD, Rurali R, Ordejon P (2010) Electronic transport between graphene layers covalently connected by carbon nanotubes. ACS Nano 4(12):7596–7602. https://doi.org/10.1021/nn102206n

    Article  CAS  Google Scholar 

  35. Varshney V, Patnaik SS, Roy AK, Froudakis G, Farmer BL (2010) Modeling of thermal transport in pillared-graphene architectures. ACS Nano 4(2):1153–1161. https://doi.org/10.1021/nn901341r

    Article  CAS  Google Scholar 

  36. Dimitrakakis GK, Tylianakis E, Froudakis GE (2008) Pillared graphene: a new 3-D network nanostructure for enhancedERENCES hydrogen storage. Nano Lett 8(10):3166–3170. https://doi.org/10.1021/nl801417w

    Article  CAS  Google Scholar 

  37. Faisal SN, Subramaniyam CM, Haque E, Islam MM, Noorbehesht N, Roy AK, Islam MS, Liu HK, Dou SX, Harris AT, Minett AI (2018) Nanoarchitectured nitrogen-doped graphene/carbon nanotube as high performance electrodes for solid state supercapacitors, capacitive deionization, Li-ion battery, and metal-free bifunctional electrocatalysis. ACS Appl Energy Mater 1(10):5211–5223. https://doi.org/10.1021/acsaem.8b00845

    Article  CAS  Google Scholar 

  38. Sideri IK, Tagmatarchis N (2020) Noble-metal-free doped carbon nanomaterial electrocatalysts. Chem Eur J 26(67):15397–15415. https://doi.org/10.1002/chem.202003613

    Article  CAS  Google Scholar 

  39. Fernandes DM, Mathumba P, Fernandes AJ, Iwuoha EI, Freire C (2019) Towards efficient oxygen reduction reaction electrocatalysts through graphene doping. Electrochim Acta 319:72–81. https://doi.org/10.1016/j.electacta.2019.06.175

    Article  CAS  Google Scholar 

  40. Ilnicka A, Kamedulski P, Skorupska M, Lukaszewicz JP (2019) Metal-free nitrogen-rich carbon foam derived from amino acids for the oxygen reduction reaction. J Mater Sci 54(24):14859–14871. https://doi.org/10.1007/s10853-019-03969-9

    Article  CAS  Google Scholar 

  41. Araújo MP, Nunes M, Rocha IM, Pereira M, Freire C (2019) Electrocatalytic activity of new Mn 3 O 4@ oxidized graphene flakes nanocomposites toward oxygen reduction reaction. J Mater Sci 54(12):8919–8940. https://doi.org/10.1007/s10853-019-03508-6

    Article  CAS  Google Scholar 

  42. Tao H, Gao Y, Talreja N, Guo F, Texter J, Yan C, Sun Z (2017) Two-dimensional nanosheets for electrocatalysis in energy generation and conversion. J Mater Chem A 5(16):7257–7284. https://doi.org/10.1039/C7TA00075H

    Article  CAS  Google Scholar 

  43. Zhang H, Wang Y, Wang D, Li Y, Liu X, Liu P, Yang H, An T, Tang Z, Zhao H (2014) Hydrothermal transformation of dried grass into graphitic carbon-based high performance electrocatalyst for oxygen reduction reaction. Small 10(16):3371–3378. https://doi.org/10.1002/smll.201400781

    Article  CAS  Google Scholar 

  44. Nunes M, Fernandes DM, Rocha IM, Pereira MFR, Mbomekalle I-M, de Oliveira P, Freire C (2016) Phosphomolybdate@Carbon-based nanocomposites as electrocatalysts for oxygen reduction reaction. ChemistrySelect 1(19):6257–6266. https://doi.org/10.1002/slct.201601370

    Article  CAS  Google Scholar 

  45. Daems N, Sheng X, Vankelecom IFJ, Pescarmona PP (2014) Metal-free doped carbon materials as electrocatalysts for the oxygen reduction reaction. J Mater Chem A 2(12):4085–4110. https://doi.org/10.1039/C3TA14043A

    Article  CAS  Google Scholar 

  46. Nunes M, Rocha IM, Fernandes DM, Mestre AS, Moura CN, Carvalho AP, Pereira MFR, Freire C (2015) Sucrose-derived activated carbons: electron transfer properties and application as oxygen reduction electrocatalysts. RSC Adv 5(124):102919–102931. https://doi.org/10.1039/c5ra20874b

    Article  CAS  Google Scholar 

  47. Zhao Y-M, Yu G-Q, Wang F-F, Wei P-J, Liu J-G (2019) Bioinspired transition-metal complexes as electrocatalysts for the oxygen reduction reaction. Chem Eur J 25(15):3726–3739. https://doi.org/10.1002/chem.201803764

    Article  CAS  Google Scholar 

  48. Zhou J, An XQ, Lan HC, Liu HJ, Qu JH (2020) New insights into the surface-dependent activity of graphitic felts for the electro-generation of H2O2. Appl Surf Sci 509:144875. https://doi.org/10.1016/j.apsusc.2019.144875

    Article  CAS  Google Scholar 

  49. Campos-Martin JM, Blanco-Brieva G, Fierro JLG (2006) Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. Angew Chem Int Ed 45(42):6962–6984. https://doi.org/10.1002/anie.200503779

    Article  CAS  Google Scholar 

  50. Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112(11):6156–6214. https://doi.org/10.1021/cr3000412

    Article  CAS  Google Scholar 

  51. Song H, Yang L, Tang Y, Dafeng Y, Liu C, Luo S (2015) Three-dimensional nitrogen-doped reduced graphene oxide-carbon nanotubes architecture supporting ultrafine palladium nanoparticles for highly efficient methanol electrooxidation. Chem Eur J 21(46):16631–16638. https://doi.org/10.1002/chem.201502804

    Article  CAS  Google Scholar 

  52. Khan U, O’Neill A, Porwal H, May P, Nawaz K, Coleman JN (2012) Size selection of dispersed, exfoliated graphene flakes by controlled centrifugation. Carbon 50(2):470–475. https://doi.org/10.1016/j.carbon.2011.09.001

    Article  CAS  Google Scholar 

  53. Elosua C, Lopez-Torres D, Hernaez M, Matias IR, Arregui FJ (2013) Comparative study of layer-by-layer deposition techniques for poly(sodium phosphate) and poly(allylamine hydrochloride). Nanoscale Res Lett 8(1):539–539. https://doi.org/10.1186/1556-276X-8-539

    Article  CAS  Google Scholar 

  54. White B, Banerjee S, O’Brien S, Turro NJ, Herman IP (2007) Zeta-potential measurements of surfactant-wrapped individual single-walled carbon nanotubes. J Phys Chem C 111(37):13684–13690. https://doi.org/10.1021/jp070853e

    Article  CAS  Google Scholar 

  55. Sun Z, Nicolosi V, Rickard D, Bergin SD, Aherne D, Coleman JN (2008) Quantitative evaluation of surfactant-stabilized single-walled carbon nanotubes: dispersion quality and its correlation with zeta potential. J Phys Chem C 112(29):10692–10699. https://doi.org/10.1021/jp8021634

    Article  CAS  Google Scholar 

  56. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87(9–10):1051. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  57. Liu F, Peng HJ, You C, Fu Z, Huang P, Song H, Liao S (2014) High-performance doped carbon catalyst derived from nori biomass with melamine promoter. Electrochim Acta 138:353–359. https://doi.org/10.1016/j.electacta.2014.06.098

    Article  CAS  Google Scholar 

  58. Delmondo L, Salvador GP, Muñoz-Tabares JA, Sacco A, Garino N, Castellino M, Gerosa M, Massaglia G, Chiodoni A, Quaglio M (2016) Nanostructured MnxOy for oxygen reduction reaction (ORR) catalysts. Appl Surf Sci 388:631–639. https://doi.org/10.1016/j.apsusc.2016.03.224

    Article  CAS  Google Scholar 

  59. Hoang S, Guo S, Hahn NT, Bard AJ, Mullins CB (2012) Visible light driven photoelectrochemical water oxidation on nitrogen-modified TiO2 nanowires. Nano Lett 12(1):26–32. https://doi.org/10.1021/nl2028188

    Article  CAS  Google Scholar 

  60. Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun 143(1–2):47–57. https://doi.org/10.1016/j.ssc.2007.03.052

    Article  CAS  Google Scholar 

  61. Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS (2009) Raman spectroscopy in graphene. Phys Rep 473(5):51–87. https://doi.org/10.1016/j.physrep.2009.02.003

    Article  CAS  Google Scholar 

  62. Buzaglo M, Bar IP, Varenik M, Shunak L, Pevzner S, Regev O (2017) Graphite-to-graphene: total conversion. Adv Mater 29(8):1603528. https://doi.org/10.1002/adma.201603528

    Article  CAS  Google Scholar 

  63. Ornelas M, Azenha M, Araujo MJ, Marques EF, Dias-Cabral AC, Pereira C, Silva AF (2016) Acylated-naproxen as the surface-active template in the preparation of micro- and nanospherical imprinted xerogels by emulsion techniques. J Chromatogr A 1437:107–115. https://doi.org/10.1016/j.chroma.2016.01.074

    Article  CAS  Google Scholar 

  64. Goddard ED (2002) Polymer/surfactant interaction: Interfacial aspects. J Colloid Interface Sci 256(1):228–235. https://doi.org/10.1006/jcis.2001.8066

    Article  CAS  Google Scholar 

  65. Wang S, Yu D, Dai L (2011) Polyelectrolyte functionalized carbon nanotubes as efficient metal-free electrocatalysts for oxygen reduction. J Am Chem Soc 133(14):5182–5185. https://doi.org/10.1021/ja1112904

    Article  CAS  Google Scholar 

  66. Zhang Y, Fugane K, Mori T, Niu L, Ye J (2012) Wet chemical synthesis of nitrogen-doped graphene towards oxygen reduction electrocatalysts without high-temperature pyrolysis. J Mater Chem A 22(14):6575–6580. https://doi.org/10.1039/C2JM00044J

    Article  CAS  Google Scholar 

  67. Shinagawa T, Garcia-Esparza AT, Takanabe K (2015) Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci Rep 5(1):13801. https://doi.org/10.1038/srep13801

    Article  Google Scholar 

  68. Oturan N, Oturan MA (2018) Electro-Fenton Process: Background, New Developments, and Applications. In: Martínez-Huitle CA, Rodrigo MA, Scialdone O (eds) Electrochemical Water and Wastewater Treatment. Butterworth Heinemann, pp 193–221. https://doi.org/10.1016/B978-0-12-813160-2.00008-0

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Fundação para a Ciência e a Tecnologia (FCT) for financial support through project UIDB/00081/2020. Prof. M. Azenha and coworkers are acknowledged for the support with Raman and BET experiments. B. Abreu also acknowledges financial support from FCT through the PhD grant PD/BD/128129/2016. M. Nunes acknowledges project PTDC/QUI-ELT/28299/2017 by its work contract, funded by FCT/MCTES through national funds and co-funded by FEDER (POCI-01-0145-FEDER-28299).

Author information

Authors and Affiliations

Authors

Contributions

B. Abreu was involved in investigation, formal analysis, validation, writing—original draft. M. Rocha helped in investigation. M. Nunes contributed to methodology, formal analysis, validation, writing—review & editing. C. Freire was involved in methodology, validation. E. F. Marques helped in conceptualization, methodology, resources, supervision, funding acquisition, writing—review & editing.

Corresponding authors

Correspondence to Marta Nunes or Eduardo F. Marques.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Joshua Tong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7606 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abreu, B., Rocha, M., Nunes, M. et al. Carbon nanotube/graphene nanocomposites built via surfactant-mediated colloid assembly as metal-free catalysts for the oxygen reduction reaction. J Mater Sci 56, 19512–19527 (2021). https://doi.org/10.1007/s10853-021-06463-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06463-3

Navigation