Skip to main content
Log in

Synergistic effects of acetic acid and nitric acid in water-based sol–gel synthesis of crystalline TiO2 nanoparticles at 25 °C

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Organic and inorganic acid catalysts enable control over the sol–gel synthesis of crystalline TiO2 nanoparticles. While the mechanism of organic acids (e.g., acetic acid) and inorganic acids (e.g., nitric acid) is well documented, the effect of both acid types used simultaneously is still unclear. This work provides more insights into the mechanism of both acetic acid and nitric acid in acid-catalyzed sol–gel synthesis of crystalline TiO2 nanoparticles. Acetic acid and nitric acid were used as examples for organic and inorganic acids, respectively, while keeping the reaction temperature constant at 25 °C. Investigating the particle growth and the polydispersity by dynamic light scattering revealed synergistic effects when both acetic acid and nitric acid were present, resulting in separating the two steps of the sol–gel reaction, namely the hydrolysis and condensation steps. This separation induces a control on the sol–gel reaction toward the formation of crystalline TiO2 as confirmed by wide angle X-ray scattering combined with Rietveld analysis. It also appeared that the anatase-to-brookite phase transition was enhanced by an increased acetic acid and nitric acid content reaching 80% anatase content when the acid to TiO2 precursor molar ratio increased from 1 to 10.6. The results and the insights presented in this work could be useful for optimizing crystalline TiO2 production at low temperature.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Hanaor DAH, Sorrell CC (2011) Review of the anatase to rutile phase transformation. J Mater Sci 46:855–874. https://doi.org/10.1007/s10853-010-5113-0

    Article  CAS  Google Scholar 

  2. Takahashi J, Itoh H, Motai S, Shimada S (2003) Dye adsorption behavior of anatase- and rutile-type TiO2 nanoparticles modified by various heat-treatments. J Mater Sci 38:1695–1702. https://doi.org/10.1023/A:1023219524934

    Article  CAS  Google Scholar 

  3. Banerjee S, Dionysiou DD, Pillai SC (2015) Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Appl Catal B Environ 176–177:396–428. https://doi.org/10.1016/j.apcatb.2015.03.058

    Article  CAS  Google Scholar 

  4. Pelaez M, Nolan NT, Pillai SC et al (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ 125:331–349. https://doi.org/10.1016/j.apcatb.2012.05.036

    Article  CAS  Google Scholar 

  5. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38. https://doi.org/10.1038/238037a0

    Article  CAS  Google Scholar 

  6. Zhang H, Banfield JF (1998) Thermodynamic analysis of phase stability of nanocrystalline titania. J Mater Chem 8:2073–2076. https://doi.org/10.1039/a802619j

    Article  CAS  Google Scholar 

  7. Bellardita M, Di Paola A, Megna B, Palmisano L (2017) Absolute crystallinity and photocatalytic activity of brookite TiO2 samples. Appl Catal B Environ 201:150–158. https://doi.org/10.1016/j.apcatb.2016.08.012

    Article  CAS  Google Scholar 

  8. Luttrell T, Halpegamage S, Tao J et al (2014) Why is anatase a better photocatalyst than rutile? - model studies on epitaxial TiO2 films. Sci Rep 4:4043. https://doi.org/10.1038/srep04043

    Article  CAS  Google Scholar 

  9. Pigeot-Rémy S, Gregori D, Hazime R et al (2019) Size and shape effect on the photocatalytic efficiency of TiO2 brookite. J Mater Sci 54:1213–1225. https://doi.org/10.1007/s10853-018-2924-x

    Article  CAS  Google Scholar 

  10. Zhang J, Zhou P, Liu J, Yu J (2014) New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys Chem Chem Phys 16:20382–20386. https://doi.org/10.1039/C4CP02201G

    Article  CAS  Google Scholar 

  11. Ardizzone S, Bianchi CL, Cappelletti G et al (2007) Tailored anatase/brookite nanocrystalline TiO2. The optimal particle features for liquid- and gas-phase photocatalytic reactions. J Phys Chem C 111(35):13222–13231. https://doi.org/10.1021/jp0741096

    Article  CAS  Google Scholar 

  12. Kang X, Chen S (2010) Photocatalytic reduction of methylene blue by TiO2 nanotube arrays: effects of TiO2 crystalline phase. J Mater Sci 45:2696–2702. https://doi.org/10.1007/s10853-010-4254-5

    Article  CAS  Google Scholar 

  13. Wu F, Zhou Z, Hicks AL (2019) Life cycle impact of titanium dioxide nanoparticle synthesis through physical, chemical, and biological routes. Environ Sci Technol 53:4078–4087. https://doi.org/10.1021/acs.est.8b06800

    Article  CAS  Google Scholar 

  14. Cargnello M, Gordon TR, Murray CB (2014) Solution-phase synthesis of titanium dioxide nanoparticles and nanocrystals. Chem Rev 114:9319–9345

    Article  CAS  Google Scholar 

  15. Wen T, Gao J, Shen J, Zhou Z (2001) Preparation and characterization of TiO2 thin films by the sol-gel process. J Mater Sci 36:5923–5926. https://doi.org/10.1023/A:1012989012840

    Article  CAS  Google Scholar 

  16. Macwan DP, Dave PN, Chaturvedi S (2011) A review on nano-TiO2 sol–gel type syntheses and its applications. J Mater Sci 46:3669–3686. https://doi.org/10.1007/s10853-011-5378-y

    Article  CAS  Google Scholar 

  17. Fallet M, Permpoon S, Deschanvres JL, Langlet M (2006) Influence of physico-structural properties on the photocatalytic activity of sol-gel derived TiO2 thin films. J Mater Sci 41:2915–2927. https://doi.org/10.1007/s10853-006-5077-2

    Article  CAS  Google Scholar 

  18. Rubio F, Rubio J, Duran P, Oteo JL (1999) Preparation of nanometric titanium hydrous oxide particles by vapour phase hydrolysis of titanium tetrabutoxide. J Mater Sci 34:3397–3404. https://doi.org/10.1023/A:1004685216239

    Article  CAS  Google Scholar 

  19. Eaimsumang S, Prataksanon P, Pongstabodee S, Luengnaruemitchai A (2020) Effect of acid on the crystalline phase of TiO2 prepared by hydrothermal treatment and its application in the oxidative steam reforming of methanol. Res Chem Intermed 46:1235–1254. https://doi.org/10.1007/s11164-019-04031-8

    Article  CAS  Google Scholar 

  20. Quintero Y, Mosquera E, Diosa J, García A (2020) Ultrasonic-assisted sol–gel synthesis of TiO2 nanostructures: influence of synthesis parameters on morphology, crystallinity, and photocatalytic performance. J Sol-Gel Sci Technol 94:477–485. https://doi.org/10.1007/s10971-020-05263-6

    Article  CAS  Google Scholar 

  21. Kignelman G, Thielemans W (2021) Meta-analysis of TiO2 nanoparticle synthesis strategies to assess the impact of key reaction parameters on their crystallinity. J Mater Sci 56:5975–5994. https://doi.org/10.1007/s10853-020-05607-1

    Article  CAS  Google Scholar 

  22. Livage J, Henry M, Sanchez C (1988) Sol-gel chemistry of transition metal oxides. Prog Solid State Chem 18:259–341. https://doi.org/10.1016/0079-6786(88)90005-2

    Article  CAS  Google Scholar 

  23. Doeuff S, Henry M, Sanchez C, Livage J (1987) Hydrolysis of titanium alkoxides: modification of the molecular precursor by acetic acid. J Non Cryst Solids 89:206–216. https://doi.org/10.1016/S0022-3093(87)80333-2

    Article  CAS  Google Scholar 

  24. Sanchez C, Livage J, Henry M, Babonneau F (1988) Chemical modification of alkoxide precursors. J Non Cryst Solids 100:65–76. https://doi.org/10.1016/0022-3093(88)90007-5

    Article  CAS  Google Scholar 

  25. Han S, Choi S-H, Kim S-S et al (2005) Low-temperature synthesis of highly crystalline TiO2 nanocrystals and their application to photocatalysis. Small 1:812–816. https://doi.org/10.1002/smll.200400142

    Article  CAS  Google Scholar 

  26. Isley SL, Penn LR (2006) Relative brookite and anatase content in sol-gel-synthesized titanium dioxide nanoparticles. J Phys Chem B 110:15134–15139. https://doi.org/10.1021/jp061417f

    Article  CAS  Google Scholar 

  27. Leyva-Porras C, Toxqui-Teran A, Vega-Becerra O et al (2015) Low-temperature synthesis and characterization of anatase TiO2 nanoparticles by an acid assisted sol–gel method. J Alloys Compd 647:627–636. https://doi.org/10.1016/j.jallcom.2015.06.041

    Article  CAS  Google Scholar 

  28. Hidalgo MC, Aguilar M, Maicu M et al (2007) Hydrothermal preparation of highly photoactive TiO2 nanoparticles. Catal Today 129:50–58. https://doi.org/10.1016/j.cattod.2007.06.053

    Article  CAS  Google Scholar 

  29. Daoud WA, Xin JH (2005) Synthesis of single-phase anatase nanocrystallites at near room temperatures. Chem Commun 2005:2110–2112. https://doi.org/10.1039/b418821g

    Article  CAS  Google Scholar 

  30. Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71. https://doi.org/10.1107/S0021889869006558

    Article  CAS  Google Scholar 

  31. Karahan HE, Karakuş K, Birer Ö (2015) Simultaneous DLS–SLS study of titanium and titanium/silicon oxide sol growth. J Sol-Gel Sci Technol 76:251–259. https://doi.org/10.1007/s10971-015-3772-7

    Article  CAS  Google Scholar 

  32. Bradley DC, Gaze R, Wardlaw W (1957) 86. Structural aspects of the hydrolysis of titanium alkoxides. J Chem Soc 1957:469–478. https://doi.org/10.1039/jr9570000469

    Article  Google Scholar 

  33. Downs RT, Hall-Wallace M (2003) The American Mineralogist crystal structure database. Am Mineral 88:247–250

    Article  CAS  Google Scholar 

  34. Birnie DP III, Bendzko NJ (1999) And NMR observation of the reaction of acetic acid with titanium isopropoxide. Mater Chem Phys 59:26–35. https://doi.org/10.1016/S0254-0584(99)00021-8

    Article  CAS  Google Scholar 

  35. Parra R, Góes MS, Castro MS et al (2008) Reaction pathway to the synthesis of anatase via the chemical modification of titanium isopropoxide with acetic acid. Chem Mater 20:143–150. https://doi.org/10.1021/cm702286e

    Article  CAS  Google Scholar 

  36. Hu C, Duo S, Zhang R et al (2010) Nanocrystalline anatase TiO2 prepared via a facile low temperature route. Mater Lett 64:2040–2042. https://doi.org/10.1016/j.matlet.2010.06.059

    Article  CAS  Google Scholar 

  37. Barbé CJ, Arendse F, Comte P et al (2005) Nanocrystalline titanium oxide electrodes for photovoltaic applications. J Am Ceram Soc 80:3157–3171. https://doi.org/10.1111/j.1151-2916.1997.tb03245.x

    Article  Google Scholar 

  38. Attar AS, Ghamsari MS, Hajiesmaeilbaigi F, Mirdamadi S (2008) Modifier ligands effects on the synthesized TiO2 nanocrystals. J Mater Sci 43:1723–1729. https://doi.org/10.1007/s10853-007-2244-z

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from EU Interreg France-Wallonie-Vlaanderen through the TEXACOV project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim Thielemans.

Ethics declarations

Conflicts of interest

The authors declare no competing financial interest.

Additional information

Handling Editor: Christopher Blanford.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 919 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kignelman, G., Thielemans, W. Synergistic effects of acetic acid and nitric acid in water-based sol–gel synthesis of crystalline TiO2 nanoparticles at 25 °C. J Mater Sci 56, 16877–16886 (2021). https://doi.org/10.1007/s10853-021-06372-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06372-5

Navigation