Skip to main content
Log in

Meta-analysis of TiO2 nanoparticle synthesis strategies to assess the impact of key reaction parameters on their crystallinity

  • Invited Viewpoint
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Sol-gel and hydrothermal synthesis methods are the most sustainable processes for TiO2 nanoparticle synthesis following recent life cycle analyses (LACs). Complementary to these existing LCAs, this meta-analysis evaluates, classifies, and discusses the impact of reaction parameters on the properties of the resulting TiO2 nanoparticles. Focusing on both sol-gel and hydrothermal methods, this work analyzes the reaction conditions in spherical crystalline TiO2 nanoparticle synthesis strategies in published reports. In order to classify the impact of these reaction conditions on the crystallinity of the resulting TiO2 nanoparticles, we employed a methodology based on a local ranking (how impactful each single reaction parameter was according to the authors of the respective publications) and on a global ranking (according to average local rankings). This enabled us to uncover that the synthesis parameters’ impact on the crystallinity of TiO2 nanoparticles varied in this order of reducing impact: solvent composition = presence of catalyst = solvent removal approach > synthesis method > calcination. The impact of each of these parameter categories on TiO2 nanoparticle crystallinity is then further discussed in more detail.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Robichaud CO, Uyar AE, Darby MR, Zucker LG, Wiesner MR (2009) Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment. Environ Sci Technol Technol. 43:4227–4233. https://doi.org/10.1021/es8032549

    Article  CAS  Google Scholar 

  2. Caramazana-González P, Dunne PW, Gimeno-Fabra M, Zilka M, Ticha M, Stieberova B, Freiberg F, McKechnie J, Lester EH (2017) Assessing the life cycle environmental impacts of titania nanoparticle production by continuous flow solvo/hydrothermal syntheses. Green Chem 19:1536–1547. https://doi.org/10.1039/C6GC03357A

    Article  CAS  Google Scholar 

  3. Pini M, Rosa R, Neri P, Bondiolic F, Ferrari AM (2015) Environmental assessment of a bottom-up hydrolytic synthesis of TiO2 nanoparticles. Green Chem 17:518–531. https://doi.org/10.1039/c4gc00919c

    Article  CAS  Google Scholar 

  4. Reck E, Richards M (1999) TiO2 manufacture and life cycle analysis. Pigment Resin Technol 28:149–157. https://doi.org/10.1108/03699429910271297

    Article  CAS  Google Scholar 

  5. Wu F, Zhou Z, Hicks AL (2019) Life cycle impact of titanium dioxide nanoparticle synthesis through physical, chemical, and biological routes. Environ Sci Technol 53:4078–4087. https://doi.org/10.1021/acs.est.8b06800

    Article  CAS  Google Scholar 

  6. Cargnello M, Gordon TR, Murray CB (2014) Solution-phase synthesis of titanium dioxide nanoparticles and nanocrystals. Chem Rev 114:9319–9345. https://doi.org/10.1021/cr500170p

    Article  CAS  Google Scholar 

  7. Macwan DP, Dave PN, Chaturvedi S (2011) A review on nano-TiO2 sol–gel type syntheses and its applications. J Mater Sci 46(11):3669–3686. https://doi.org/10.1007/s10853-011-5378-y

    Article  CAS  Google Scholar 

  8. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications and applications. Chem Rev 107:2891–2959. https://doi.org/10.1021/cr0500535

    Article  CAS  Google Scholar 

  9. Chae SY, Park MK, Lee SK, Kim TY, Kim SK, Lee WI (2003) Preparation of size-controlled TiO2 nanoparticles and derivation of optically transparent photocatalytic films. Chem Mater 15:3326–3331. https://doi.org/10.1021/cm030171d

    Article  CAS  Google Scholar 

  10. Guang M, Xia Y, Wang D, Zeng XF, Wang JX, Chen JF (2019) Controllable synthesis of transparent dispersions of monodisperse anatase-TiO2 nanoparticles and nanorods. Mater Chem Phys 224:100–106. https://doi.org/10.1016/j.matchemphys.2018.12.012

    Article  CAS  Google Scholar 

  11. Hanaor DA, Sorrell CC (2011) Review of the anatase to rutile phase transformation. J Mater Sci 46(4):855–874. https://doi.org/10.1007/s10853-010-5113-0

    Article  CAS  Google Scholar 

  12. Mikolajewicz N, Komarova SV (2019) Meta-analytic methodology for basic research: a practical guide. Front Physiol. https://doi.org/10.3389/fphys.2019.00203

    Article  Google Scholar 

  13. Aruna ST, Tirosh S, Zaban A (2000) Nanosize rutile titania particle synthesis via a hydrothermal method without mineralizers. J Mater Chem 10:2388–2391. https://doi.org/10.1039/b001718n

    Article  CAS  Google Scholar 

  14. Isley SL, Penn LR (2006) Relative brookite and anatase content in sol-gel-synthesized titanium dioxide nanoparticles. J Phys Chem B 110:15134–15139. https://doi.org/10.1021/jp061417f

    Article  CAS  Google Scholar 

  15. Parayil SK, Psota RJ, Koodali RT (2013) Modulating the textural properties and photocatalytic hydrogen production activity of TiO2 by high temperature supercritical drying. Int J Hydrog Energy 38:10215–10225. https://doi.org/10.1016/j.ijhydene.2013.06.015

    Article  CAS  Google Scholar 

  16. Behnajady MA, Eskandarloo H, Modirshahla N, Shokri M (2011) Sol-gel low-temperature synthesis of stable anatase-type TiO2 nanoparticles under different conditions and its photocatalytic activity. Photochem Photobiol 87:1002–1008. https://doi.org/10.1111/j.1751-1097.2011.00954.x

    Article  CAS  Google Scholar 

  17. Barringer EA, Bowen HK (1982) Formation, packing, and sintering of monodisperse TiO2 powders. J Am Ceram Soc 65:C199–C201. https://doi.org/10.1111/j.1151-2916.1982.tb09948.x

    Article  CAS  Google Scholar 

  18. Kumaresan L, Prabhu A, Palanichamy M, Murugesan V (2011) Synthesis of mesoporous TiO2 in aqueous alcoholic medium and evaluation of its photocatalytic activity. Mater Chem Phys 126:445–452. https://doi.org/10.1016/j.matchemphys.2010.10.036

    Article  CAS  Google Scholar 

  19. Loryuenyong V, Angamnuaysiri K, Sukcharoenpong J, Suwannasri A (2012) Sol–gel derived mesoporous titania nanoparticles: effects of calcination temperature and alcoholic solvent on the photocatalytic behavior. Ceram Int 38:2233–2237. https://doi.org/10.1016/j.ceramint.2011.10.072

    Article  CAS  Google Scholar 

  20. Sugimoto T, Zhou X, Muramatsu A (2003) Synthesis of uniform anatase TiO2 nanoparticles by gel–sol method. J Colloid Interface Sci 259:43–52. https://doi.org/10.1016/s0021-9797(03)00036-5

    Article  CAS  Google Scholar 

  21. Hidalgo MC, Aguilar M, Maicu M, Navío JA, Colón G (2007) Hydrothermal preparation of highly photoactive TiO2 nanoparticles. Catal Today 129:50–58. https://doi.org/10.1016/j.cattod.2007.06.053

    Article  CAS  Google Scholar 

  22. Tubío CR, Guitián F, Salgueiro JR, Gil A (2015) Anatase and rutile TiO2 monodisperse microspheres by rapid thermal annealing: a method to avoid sintering at high temperatures. Mater Lett 141:203–206. https://doi.org/10.1016/j.matlet.2014.11.063

    Article  CAS  Google Scholar 

  23. Leyva-Porras C, Toxqui-Teran A, Vega-Becerra O, Miki-Yoshidac M, Rojas-Villalobos M, García-Guaderrama M, Aguilar-Martínez JA (2015) Low-temperature synthesis and characterization of anatase TiO2 nanoparticles by an acid assisted sol–gel method. J Alloys Compd 647:627–636. https://doi.org/10.1016/j.jallcom.2015.06.041

    Article  CAS  Google Scholar 

  24. Li G, Zhang S, Yu J (2011) Facile synthesis of single-phase TiO2 nanocrystals with high photocatalytic performance. J Am Ceram Soc 94:4112–4115. https://doi.org/10.1111/j.1551-2916.2011.04878.x

    Article  CAS  Google Scholar 

  25. Hu L, Wang J, Zhang J, Zhang Q, Liu Z (2014) An N-doped anatase/rutile TiO2 hybrid from low-temperature direct nitridization: enhanced photoactivity under UV-/visible-light. RSC Adv 4:420–427. https://doi.org/10.1039/c3ra44421j

    Article  CAS  Google Scholar 

  26. Han S, Choi S-H, Kim S-S, Cho M, Jang B, Kim D-Y, Yoon J, Hyeon T (2005) Low-temperature synthesis of highly crystalline TiO2 nanocrystals and their application to photocatalysis. Small 1:812–816. https://doi.org/10.1002/smll.200400142

    Article  CAS  Google Scholar 

  27. Wategaonkar SB, Pawar RP, Parale VG, Nade DP, Sargar BM, Mane RK (2020) Synthesis of rutile TiO2 nanostructures by single step hydrothermal route and its characterization. Mater Today Proc 23:444–451. https://doi.org/10.1016/j.matpr.2020.02.065

    Article  CAS  Google Scholar 

  28. Deshpande SB, Potdar HS, Khollam YB, Patil KR, Pasricha R, Jacob NE (2006) Room temperature synthesis of mesoporous aggregates of anatase TiO2 nanoparticles. Mater Chem Phys 97:207–212. https://doi.org/10.1016/j.matchemphys.2005.02.014

    Article  CAS  Google Scholar 

  29. Daoud WA, Xin JH (2005) Synthesis of single-phase anatase nanocrystallites at near room temperatures. Chem Commun. https://doi.org/10.1039/b418821g

    Article  Google Scholar 

  30. Morales BA, Novaro O, López T, Sánchez E, Gómez R (1995) Effect of hydrolysis catalyst on the Ti deficiency and crystallite size of sol-gel-TiO2 crystalline phases. J Mater Res 10:2788–2796. https://doi.org/10.1557/JMR.1995.2788

    Article  CAS  Google Scholar 

  31. Mahshid S, Askari M, Ghamsari MS (2007) Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution. J Mater Process Technol 189:296–300. https://doi.org/10.1016/j.jmatprotec.2007.01.040

    Article  CAS  Google Scholar 

  32. Beusen J, Van Bael MK, Van den Rul H, D’Haen J, Mullens J (2007) Preparation of a porous nanocrystalline TiO2 layer by deposition of hydrothermally synthesized nanoparticles. J Eur Ceram Soc 27:4529–4535. https://doi.org/10.1016/j.jeurceramsoc.2007.02.206

    Article  CAS  Google Scholar 

  33. Seck EI, Doña-Rodríguez JM, Pulido Melián E, Fernández-Rodríguez C, González-Díaz OM, Portillo-Carrizo D, Pérez-Peña J (2013) Comparative study of nanocrystalline titanium dioxide obtained through sol–gel and sol–gel–hydrothermal synthesis. J Colloid Interface Sci 400:31–40. https://doi.org/10.1016/j.jcis.2013.03.019

    Article  CAS  Google Scholar 

  34. Kim DS, Kwak SY (2007) The hydrothermal synthesis of mesoporous TiO2 with high crystallinity, thermal stability, large surface area, and enhanced photocatalytic activity. Appl Catal A Gen 323:110–118. https://doi.org/10.1016/j.apcata.2007.02.010

    Article  CAS  Google Scholar 

  35. Pulido Melián E, González Díaz O, Doña Rodríguez JM, Colón G, Navío JA, Pérez Peña J (2012) Effect of hydrothermal treatment on structural and photocatalytic properties of TiO2 synthesized by sol-gel method. Appl Catal A Gen 411–412:153–159. https://doi.org/10.1016/j.apcata.2011.10.033

    Article  CAS  Google Scholar 

  36. Sasani Ghamsari M, Radiman S, Azmi Abdul Hamid M, Mahshid S, Rahmani Sh (2013) Room temperature synthesis of highly crystalline TiO2 nanoparticles. Mater Lett 92:287–290. https://doi.org/10.1016/j.matlet.2012.10.032

    Article  CAS  Google Scholar 

  37. Qi K, Xin JH (2010) Room-temperature synthesis of single-phase anatase TiO2 by aging and its self-cleaning properties. ACS Appl Mater Interfaces 2:3479–3485. https://doi.org/10.1021/am1005892

    Article  CAS  Google Scholar 

  38. Wang M, Chen C, Zhao B, Zeng Q, He D (2013) Solvothermal synthesis of nanostructured TiO2 photocatalyst in supercritical CO2 fluids. Mater Lett 109:104–107. https://doi.org/10.1016/j.matlet.2013.07.049

    Article  CAS  Google Scholar 

  39. Hu C, Duo S, Zhang R, Li M, Xiang J, Li W (2010) Nanocrystalline anatase TiO2 prepared via a facile low temperature route. Mater Lett 64:2040–2042. https://doi.org/10.1016/j.matlet.2010.06.059

    Article  CAS  Google Scholar 

  40. Behnajady MA, Eskandarloo H, Modirshahla N, Shokri M (2011) Investigation of the effect of sol-gel synthesis variables on structural and photocatalytic properties of TiO2 nanoparticles. Desalination 278:10–17. https://doi.org/10.1016/j.desal.2011.04.019

    Article  CAS  Google Scholar 

  41. Ghamsari MS, Bahramian AR (2008) High transparent sol—gel derived nanostructured TiO2 thin film. Mater Lett 62:361–364. https://doi.org/10.1016/j.matlet.2007.05.053

    Article  CAS  Google Scholar 

  42. Wang W, Silva CG, Faria JL (2007) Photocatalytic degradation of chromotrope 2R using nanocrystalline TiO2/activated-carbon composite catalysts. Appl Catal B Environ 70:470–478. https://doi.org/10.1016/j.apcatb.2005.11.034

    Article  CAS  Google Scholar 

  43. Livage J, Henry M, Sanchez C (1988) Sol-gel chemistry of transition metal oxides. Prog Solid State Chem 18:259–341. https://doi.org/10.1016/0079-6786(88)90005-2

    Article  CAS  Google Scholar 

  44. Bradley DC, Gaze R, Wardlaw W (1957) 86. Structural aspects of the hydrolysis of titanium alkoxides. J Chem Soc. https://doi.org/10.1039/jr9570000469

    Article  Google Scholar 

  45. Dong CX, Xian AP, Han EH, Shang JK (2006) Acid-mediated sol–gel synthesis of visible-light active photocatalysts. J Mater Sci 41(18):6168–6170. https://doi.org/10.1007/s10853-006-0247-9

    Article  CAS  Google Scholar 

  46. Doeuff S, Henry M, Sanchez C, Livage J (1987) Hydrolysis of titanium alkoxides: modification of the molecular precursor by acetic acid. J Non Cryst Solids 89:206–216. https://doi.org/10.1016/S0022-3093(87)80333-2

    Article  CAS  Google Scholar 

  47. Birnie DP III, Bendzko NJ (1999) 1H and 13C NMR observation of the reaction of acetic acid with titanium isopropoxide. Mater Chem Phys 59:26–35. https://doi.org/10.1016/S0254-0584(99)00021-8

    Article  CAS  Google Scholar 

  48. Oskam G, Nellore A, Penn RL, Searson PC (2003) The growth kinetics of TiO2 nanoparticles from titanium(IV) alkoxide at high water/titanium ratio. J Phys Chem B 107:1734–1738. https://doi.org/10.1021/jp021237f

    Article  CAS  Google Scholar 

  49. Fallet M, Permpoon S, Deschanvres JL, Langlet M (2006) Influence of physico-structural properties on the photocatalytic activity of sol-gel derived TiO2 thin films. J Mater Sci 41(10):2915–2927. https://doi.org/10.1007/s10853-006-5077-2

    Article  CAS  Google Scholar 

  50. Finnegan MP, Zhang H, Banfield JF (2007) Phase stability and transformation in titania nanoparticles in aqueous solutions dominated by surface energy. J Phys Chem B 111:1962–1968. https://doi.org/10.1021/jp063822c

    Article  CAS  Google Scholar 

  51. Zhang H, Banfield JF (1998) Thermodynamic analysis of phase stability of nanocrystalline titania. J Mater Chem 8:2073–2076. https://doi.org/10.1039/a802619j

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from EU Interreg France-Wallonie-Vlaanderen through the TEXACOV project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim Thielemans.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Handling Editor: C. Barry Carter.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 98 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kignelman, G., Thielemans, W. Meta-analysis of TiO2 nanoparticle synthesis strategies to assess the impact of key reaction parameters on their crystallinity. J Mater Sci 56, 5975–5994 (2021). https://doi.org/10.1007/s10853-020-05607-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05607-1

Navigation