Skip to main content
Log in

Fabrication of carbon nanotubes-modified poly(ethyleneimine)/sodium lignosulfonate membranes for improved selectivity performance and antifouling capability in forward osmosis process

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Current thin film nanocomposite membranes incorporated with microporous particles are demanding for improving membrane performance. In this study, carbon nanotubes (CNTs)-modified poly(ethyleneimine) (PEI)/sodium lignosulfonate (SL) membranes were prepared through layer-by-layer assembly by dispersing CNTs into PEI and/or SL solutions, in order to investigate the effects of CNTs on membrane structure and forward osmosis performance. The characterization results indicated that the CNTs can be well-incorporated in the PEI/SL membranes, which contribute to a slightly lower hydrophilicity of membrane surface and different membrane morphology. The forward osmosis performance of the PEI/SL and CNTs-modified PEI/SL membranes were investigated for application in separating NaCl from water. Compare with the PEI/SL membrane, PEI/(SL–CNTs) membrane prepared by dispersing CNTs into the SL solution exhibited the best water flux and membrane selectivity. The increase in the CNTs content of the PEI/(SL–CNTs) membrane can enhance the water flux, but cannot significantly impact on the reverse salt flux, resulting in the improvement in membrane selectivity. The PEI/(SL–CNTs) membrane containing 0.075 g L−1 CNTs in SL showed a 66.3% higher water flux of 7.32 LMH, also exhibited better antifouling and foulant-release properties. This study offers a new method to design novel FO membranes for desalination and water purification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Amini M, Jahanshahi M, Rahimpour A (2013) Synthesis of novel thin film nanocomposite (TFN) forward osmosis membranes using functionalized multi-walled carbon nanotubes. J Membr Sci 435:233–241. https://doi.org/10.1016/j.memsci.2013.01.041

    Article  CAS  Google Scholar 

  2. Borges J, Mano JF (2014) Molecular interactions driving the layer-by-layer assembly of multilayers. Chem Rev 114(18):8883–8942. https://doi.org/10.1021/cr400531v

    Article  CAS  Google Scholar 

  3. Chan Y, Hill JM (2011) A mechanical model for single-file transport of water through carbon nanotube membranes. J Membr Sci 372(1–2):57–65. https://doi.org/10.1016/j.memsci.2011.01.040

    Article  CAS  Google Scholar 

  4. Choi HG, Son M, Choi H (2017) Integrating seawater desalination and wastewater reclamation forward osmosis process using thin-film composite mixed matrix membrane with functionalized carbon nanotube blended polyethersulfone support layer. Chemosphere 185:1181–1188. https://doi.org/10.1016/j.chemosphere.2017.06.136

    Article  CAS  Google Scholar 

  5. Hadadpour S, Tavakol I, Shabani Z, Mohammadi T, Tofighy MA, Sahebi S (2021) Synthesis and characterization of novel thin film composite forward osmosis membrane using charcoal-based carbon nanomaterials for desalination application. J Environ Chem Eng 9(1):104880. https://doi.org/10.1016/j.jece.2020.104880

    Article  CAS  Google Scholar 

  6. Han G, Chung T-S, Toriida M, Tamai S (2012) Thin-film composite forward osmosis membranes with novel hydrophilic supports for desalination. J Membr Sci 423–424:543–555. https://doi.org/10.1016/j.memsci.2012.09.005

    Article  CAS  Google Scholar 

  7. Joseph N, Ahmadiannamini P, Hoogenboom R, Vankelecom IFJ (2014) Layer-by-layer preparation of polyelectrolyte multilayer membranes for separation. Polym Chem 5(6):1817–1831. https://doi.org/10.1039/c3py01262j

    Article  CAS  Google Scholar 

  8. Kang H, Wang W, Shi J, Xu Z, Lv H, Qian X, Liu L, Jing M, Li F, Niu J (2019) Interlamination restrictive effect of carbon nanotubes for graphene oxide forward osmosis membrane via layer by layer assembly. Appl Surf Sci 465:1103–1106. https://doi.org/10.1016/j.apsusc.2018.09.255

    Article  CAS  Google Scholar 

  9. Kar S, Bindal RC, Tewari PK (2012) Carbon nanotube membranes for desalination and water purification: challenges and opportunities. Nano Today 7(5):385–389. https://doi.org/10.1016/j.nantod.2012.09.002

    Article  CAS  Google Scholar 

  10. Kim HJ, Baek Y, Choi K, Kim D-G, Kang H, Choi Y-S, Yoon J, Lee J-C (2014) The improvement of antibiofouling properties of a reverse osmosis membrane by oxidized CNTs. RSC Adv 4(62):32802. https://doi.org/10.1039/c4ra06489e

    Article  CAS  Google Scholar 

  11. Kwon SJ, Park S-H, Park MS, Lee JS, Lee J-H (2017) Highly permeable and mechanically durable forward osmosis membranes prepared using polyethylene lithium ion battery separators. J Membr Sci 544:213–220. https://doi.org/10.1016/j.memsci.2017.09.022

    Article  CAS  Google Scholar 

  12. Lau WJ, Ismail AF, Misdan N, Kassim MA (2012) A recent progress in thin film composite membrane: a review. Desalination 287:190–199. https://doi.org/10.1016/j.desal.2011.04.004

    Article  CAS  Google Scholar 

  13. Li M-N, Sun X-F, Wang L, Wang S-Y, Afzal MZ, Song C, Wang S-G (2018) Forward osmosis membranes modified with laminar MoS2 nanosheet to improve desalination performance and antifouling properties. Desalination 436:107–113. https://doi.org/10.1016/j.desal.2018.02.008

    Article  CAS  Google Scholar 

  14. Liao K, Lu F, Liu C, Fu D (2015) Preparation and research of butylene fipronil microencapsulation by layer-by-layer polyelectrolyte self-assembly. J Macromol Sci Part A Pure Appl Chem 52(5):374–380. https://doi.org/10.1080/10601325.2015.1018808

    Article  CAS  Google Scholar 

  15. Liu Y, Gao L, Zheng S, Wang Y, Sun J, Kajiura H, Li Y, Noda K (2007) Debundling of single-walled carbon nanotubes by using natural polyelectrolytes. Nanotechnology 18(36):365702. https://doi.org/10.1088/0957-4484/18/36/365702

    Article  CAS  Google Scholar 

  16. Ma N, Wei J, Qi S, Zhao Y, Gao Y, Tang CY (2013) Nanocomposite substrates for controlling internal concentration polarization in forward osmosis membranes. J Membr Sci 441:54–62. https://doi.org/10.1016/j.memsci.2013.04.004

    Article  CAS  Google Scholar 

  17. Merdy P, Guillon E, Frapart YM, Aplincourt M (2003) Iron and manganese surface complex formation with extracted lignin. Part 2: characterisation of magnetic interaction between transition metal and quinonic radical by EPR microwave power saturation experiments. New J Chem 27(3):577–582. https://doi.org/10.1039/b209665j

    Article  CAS  Google Scholar 

  18. Morales-Torres S, Esteves CMP, Figueiredo JL, Silva AMT (2016) Thin-film composite forward osmosis membranes based on polysulfone supports blended with nanostructured carbon materials. J Membr Sci 520:326–336. https://doi.org/10.1016/j.memsci.2016.07.009

    Article  CAS  Google Scholar 

  19. Paterno LGMLHC (2002) Influence of different dopants on the adsorption, morphology, and properties of self-assembled films of poly (o-ethoxyaniline). J Appl Polym Sci 83(6):1309–1316. https://doi.org/10.1002/app.2298

    Article  CAS  Google Scholar 

  20. Poernomo Gunawan CG, Song X, Zhang Q, Leong SS, Tang C, Chen Y, Chan-Park MB, Chang MW, Wang K, Xu R (2011) Hollow fiber membrane decorated with Ag/MWNTs: toward effective water disinfection and biofouling control. ACS Nano 5(12):10033–10040. https://doi.org/10.1021/nn2038725

    Article  CAS  Google Scholar 

  21. Wu QY, Pan YH, Jin WZ, Xu JM, Lao KK, Gu L (2017) Preparation of sodium lignin sulfonate modified polysulfone membranes and their use as supports for forward osmosis membranes. Acta Polym Sin 5(5):851–854. https://doi.org/10.11777/j.issn1000-3304.2017.16267

    Article  CAS  Google Scholar 

  22. Saleem H, Trabzon L, Kilic A, Zaidi SJ (2020) Recent advances in nanofibrous membranes: production and applications in water treatment and desalination. Desalination 478:114178. https://doi.org/10.1016/j.desal.2019.114178

    Article  CAS  Google Scholar 

  23. Salehi H, Shakeri A, Mahdavi H, Lammertink RGH (2020) Improved performance of thin-film composite forward osmosis membrane with click modified polysulfone substrate. Desalination 496:114731. https://doi.org/10.1016/j.desal.2020.114731

    Article  CAS  Google Scholar 

  24. Sanyal O, Lee I (2014) Recent progress in the applications of layer-by-layer assembly to the preparation of nanostructured ion-rejecting water purification membranes. J Nanosci Nanotechnol 14(3):2178–2189. https://doi.org/10.1166/jnn.2014.8541

    Article  CAS  Google Scholar 

  25. She Q, Wang R, Fane AG, Tang CY (2016) Membrane fouling in osmotically driven membrane processes: a review. J Membr Sci 499:201–233. https://doi.org/10.1016/j.memsci.2015.10.040

    Article  CAS  Google Scholar 

  26. Son M, Park H, Liu L, Choi H, Kim JH, Choi H (2016) Thin-film nanocomposite membrane with CNT positioning in support layer for energy harvesting from saline water. Chem Eng J 284:68–77. https://doi.org/10.1016/j.cej.2015.08.134

    Article  CAS  Google Scholar 

  27. Song X, Wang L, Mao L, Wang Z (2016) Nanocomposite membrane with different carbon nanotubes location for nanofiltration and forward osmosis applications. ACS Sustain Chem Eng 4(6):2990–2997. https://doi.org/10.1021/acssuschemeng.5b01575

    Article  CAS  Google Scholar 

  28. Song X, Wang L, Tang CY, Wang Z, Gao C (2015) Fabrication of carbon nanotubes incorporated double-skinned thin film nanocomposite membranes for enhanced separation performance and antifouling capability in forward osmosis process. Desalination 369:1–9. https://doi.org/10.1016/j.desal.2015.04.020

    Article  CAS  Google Scholar 

  29. Sun W, Shi J, Chen C, Li N, Xu Z, Li J, Lv H, Qian X, Zhao L (2018) A review on organic–inorganic hybrid nanocomposite membranes: a versatile tool to overcome the barriers of forward osmosis. RSC Adv 8(18):10040–10056. https://doi.org/10.1039/c7ra12835e

    Article  CAS  Google Scholar 

  30. Suwaileh W, Johnson D, Khodabakhshi S, Hilal N (2019) Development of forward osmosis membranes modified by cross-linked layer by layer assembly for brackish water desalination. J Membr Sci 583:267–277. https://doi.org/10.1016/j.memsci.2019.04.052

    Article  CAS  Google Scholar 

  31. Suwaileh WA, Johnson DJ, Sarp S, Hilal N (2018) Advances in forward osmosis membranes: altering the sub-layer structure via recent fabrication and chemical modification approaches. Desalination 436:176–201. https://doi.org/10.1016/j.desal.2018.01.035

    Article  CAS  Google Scholar 

  32. Tavakol I, Hadadpour S, Shabani Z, Ahmadzadeh Tofighy M, Mohammadi T, Sahebi S (2020) Synthesis of novel thin film composite (TFC) forward osmosis (FO) membranes incorporated with carboxylated carbon nanofibers (CNFs). J Environ Chem Eng 8(6):104614. https://doi.org/10.1016/j.jece.2020.104614

    Article  CAS  Google Scholar 

  33. Teow YH, Mohammad AW (2019) New generation nanomaterials for water desalination: A Review. Desalination 451:2–17. https://doi.org/10.1016/j.desal.2017.11.041

    Article  CAS  Google Scholar 

  34. Tian M, Wang Y-N, Wang R (2015) Synthesis and characterization of novel high-performance thin film nanocomposite (TFN) FO membranes with nanofibrous substrate reinforced by functionalized carbon nanotubes. Desalination 370:79–86. https://doi.org/10.1016/j.desal.2015.05.016

    Article  CAS  Google Scholar 

  35. Tsai M-t, Chung L-h, Lin G-y, Chang M-c, Lee C-y, Tai N-h (2020) Layered carbon nanotube/polyacrylonitrile thin-film composite membrane for forward osmosis application. Sep Purif Technol 241:116683. https://doi.org/10.1016/j.seppur.2020.116683

    Article  CAS  Google Scholar 

  36. Wang KY, Chung T-S, Amy G (2012) Developing thin-film-composite forward osmosis membranes on the PES/SPSf substrate through interfacial polymerization. AlChE J 58(3):770–781. https://doi.org/10.1002/aic.12635

    Article  CAS  Google Scholar 

  37. Wang Y, Ou R, Ge Q, Wang H, Xu T (2013) Preparation of polyethersulfone/carbon nanotube substrate for high-performance forward osmosis membrane. Desalination 330:70–78. https://doi.org/10.1016/j.desal.2013.09.028

    Article  CAS  Google Scholar 

  38. Xu G-R, Wang S-H, Zhao H-L, Wu S-B, Xu J-M, Li L, Liu X-Y (2015) Layer-by-layer (LBL) assembly technology as promising strategy for tailoring pressure-driven desalination membranes. J Membr Sci 493:428–443. https://doi.org/10.1016/j.memsci.2015.06.038

    Article  CAS  Google Scholar 

  39. Xu W, Chen Q, Ge Q (2017) Recent advances in forward osmosis (FO) membrane: chemical modifications on membranes for FO processes. Desalination 419:101–116. https://doi.org/10.1016/j.desal.2017.06.007

    Article  CAS  Google Scholar 

  40. Xu W, Ge Q (2018) Novel functionalized forward osmosis (FO) membranes for FO desalination: Improved process performance and fouling resistance. J Membr Sci 555:507–516. https://doi.org/10.1016/j.memsci.2018.03.054

    Article  CAS  Google Scholar 

  41. Yu L, Yu J, Mo W, Qin Y, Yang D, Qiu X (2016) Etherification to improve the performance of lignosulfonate as dye dispersant. RSC Adv 6(75):70863–70869. https://doi.org/10.1039/c6ra12173j

    Article  CAS  Google Scholar 

  42. Zhang G, Gu W, Ji S, Liu Z, Peng Y, Wang Z (2006) Preparation of polyelectrolyte multilayer membranes by dynamic layer-by-layer process for pervaporation separation of alcohol/water mixtures. J Membr Sci 280(1–2):727–733. https://doi.org/10.1016/j.memsci.2006.02.031

    Article  CAS  Google Scholar 

  43. Zhang X, Shen L, Guan C-Y, Liu C-X, Lang W-Z, Wang Y (2018) Construction of SiO2@MWNTs incorporated PVDF substrate for reducing internal concentration polarization in forward osmosis. J Membr Sci 564:328–341. https://doi.org/10.1016/j.memsci.2018.07.043

    Article  CAS  Google Scholar 

  44. Zhang X, Xie M, Yang Z, Wu HC, Fang C, Bai L, Fang LF, Yoshioka T, Matsuyama H (2019) antifouling double-skinned forward osmosis membranes by constructing zwitterionic brush-decorated MWCNT ultrathin films. ACS Appl Mater Interfaces 11(21):19462–19471. https://doi.org/10.1021/acsami.9b03259

    Article  CAS  Google Scholar 

  45. Zhao Q, An QF, Ji Y, Qian J, Gao C (2011) Polyelectrolyte complex membranes for pervaporation, nanofiltration and fuel cell applications. J Membr Sci 379(1–2):19–45. https://doi.org/10.1016/j.memsci.2011.06.016

    Article  CAS  Google Scholar 

  46. Zhao S, Zou L, Tang CY, Mulcahy D (2012) Recent developments in forward osmosis: opportunities and challenges. J Membr Sci 396:1–21. https://doi.org/10.1016/j.memsci.2011.12.023

    Article  CAS  Google Scholar 

  47. Zheng K, Zhou S, Cheng Z, Huang G (2020) Thin-film composite forward osmosis membrane prepared from polyvinyl chloride/cellulose carbamate substrate and its potential application in brackish water desalination. J Appl Polym Sci 138(9):49939. https://doi.org/10.1002/app.49939

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was the supported by the Fundamental Research Funds for the Central Universities (No.2021ZY19), Open Research Fund Program of Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry (No. CP-2020-YB7), National Natural. Science Foundation of China (Nos. 21736001, 21776153, 21978024), and Beijing Natural Science Foundation (2202034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luying Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Chris Cornelius.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 292 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, X., Li, S., Zhan, X. et al. Fabrication of carbon nanotubes-modified poly(ethyleneimine)/sodium lignosulfonate membranes for improved selectivity performance and antifouling capability in forward osmosis process. J Mater Sci 56, 15499–15511 (2021). https://doi.org/10.1007/s10853-021-06261-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06261-x

Navigation