Skip to main content
Log in

Effect of nonequivalent substitution of Pr3+/4+ with Ca2+ in PrBaCoFeO5+δ as cathodes for IT-SOFC

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We used a Ca doping strategy with PrBaCoFeO5+δ (PBCF) to prepare a novel double-perovskite Pr1–xCaxBaCoFeO5+δ (PCBCF). x = 0.05 and x = 0.1 samples exhibited a single phase with layered double-perovskite structure, combined with good chemical compatibility with common electrolyte materials. X-ray photoelectron spectroscopy profiles of PCBCF were compared to that of PBCF to detect differences in oxidation states. The substitution of Ca2+ for Pr ions in PCBCF effectively reduces the thermal expansion coefficient and material costs. Though the introduction of Ca2+ reduced the electrical conductivity, it improved the oxygen catalytic activity. The improved electrochemical performance was attributed to the increased oxygen vacancy concentration in the lattice. The optimal composition x = 0.1 cathode exhibited the best catalytic activity and durability. The polarization impedance and maximum power density of the 0.1 cathode were 0.027 Ω cm2 and 728 mW cm−2 at 800 °C, respectively. Distribution of relaxation time analysis demonstrated that the 0.1 cathode electrochemical reactions under oxygen partial pressures involved at least three processes and confirmed that the transfer process of oxide ions and charge transfer process are the major rate-determining steps of the oxygen reduction reaction. The combination of experimental and analysis results indicated that the 0.1 sample has considerable potential as part of a cathode for application in intermediate-temperature solid oxide fuel cells.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Mahato N, Banerjee A, Gupta A, Omar S, Balani K (2015) Progress in material selection for solid oxide fuel cell technology: a review. Prog Mater Sci 72:141–337. https://doi.org/10.1016/j.pmatsci.2015.01.001

    Article  CAS  Google Scholar 

  2. Jun A, Kim J, Shin J, Kim G (2016) Perovskite as a cathode material: a review of its role in solid-oxide fuel cell technology. Chemelectrochem 3(4):511–530. https://doi.org/10.1002/celc.201500382

    Article  CAS  Google Scholar 

  3. Fan L, Zhu B, Su P-C, He C (2018) Nanomaterials and technologies for low temperature solid oxide fuel cells: recent advances, challenges and opportunities. Nano Energy 45:148–176. https://doi.org/10.1016/j.nanoen.2017.12.044

    Article  CAS  Google Scholar 

  4. Shao ZP, Haile SM (2004) A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431(7005):170–173. https://doi.org/10.1038/nature02863

    Article  CAS  Google Scholar 

  5. Abdalla AM, Hossain S, Azad AT, Petra PMI, Begum F, Eriksson SG, Azad AK (2018) Nanomaterials for solid oxide fuel cells: a review. Renew Sustain Energy Rev 82:353–368. https://doi.org/10.1016/j.rser.2017.09.046

    Article  CAS  Google Scholar 

  6. Zhang K, Ge L, Ran R, Shao Z, Liu S (2008) Synthesis, characterization and evaluation of cation-ordered LnBaCo2O5+δ as materials of oxygen permeation membranes and cathodes of SOFCs. Acta Mater 56(17):4876–4889. https://doi.org/10.1016/j.actamat.2008.06.004

    Article  CAS  Google Scholar 

  7. Zhou Q, Wang F, Shen Y, He T (2010) Performances of composite cathodes for intermediate-temperature solid oxide fuel cells. J Power Sources 195(8):2174–2181. https://doi.org/10.1016/j.jpowsour.2009.10.062

    Article  CAS  Google Scholar 

  8. Kim J-H, Manthiram A (2015) Layered LnBaCo2O5+δ perovskite cathodes for solid oxide fuel cells: an overview and perspective. J Mater Chem A 3(48):24195–24210. https://doi.org/10.1039/c5ta06212h

    Article  CAS  Google Scholar 

  9. Kim G, Wang S, Jacobson AJ, Reimus L, Brodersen P, Mims CA (2007) Rapid oxygen ion diffusion and surface exchange kinetics in PrBaCo2O5+x with a perovskite related structure and ordered A cations. J Mater Chem 17(24):2500–2505. https://doi.org/10.1039/b618345j

    Article  CAS  Google Scholar 

  10. Chen D, Ran R, Zhang K, Wang J, Shao Z (2009) Intermediate-temperature electrochemical performance of a polycrystalline PrBaCo2O5+δ cathode on samarium-doped ceria electrolyte. J Power Sources 188(1):96–105. https://doi.org/10.1016/j.jpowsour.2008.11.045

    Article  CAS  Google Scholar 

  11. Ishihara T, Kudo T, Matsuda H, Takita Y (1995) Doped PrMnO3 perovskite oxide as a new cathode of solid oxide fuel cells for low temperature operation. J Electrochem Soc 142(5):1519–1524. https://doi.org/10.1149/1.2048606

    Article  CAS  Google Scholar 

  12. Shen Y, Liu MN, He TM, Jiang SP (2010) A potential interconnect material for solid oxide fuel cells: Nd0.75Ca0.25Cr0.98O3−δ. J Power Sources 195(4):977–983. https://doi.org/10.1016/j.jpowsour.2009.08.090

    Article  CAS  Google Scholar 

  13. Zhou QJ, Zhang YC, Shen Y, He TM (2010) Layered perovskite GdBaCuCoO5+δ cathode material for intermediate-temperature solid oxide fuel cells. J Electrochem Soc 157(5):B628–B632. https://doi.org/10.1149/1.3321725

    Article  CAS  Google Scholar 

  14. Burley JC, Mitchell JF, Short S, Miller D, Tang Y (2003) Structural and magnetic chemistry of NdBaCo2O5+δ. J Solid State Chem 170(2):339–350. https://doi.org/10.1016/s0022-4596(02)00101-9

    Article  CAS  Google Scholar 

  15. Jin F, Liu J, Shen Y, He T (2016) Improved electrochemical performance and thermal expansion compatibility of LnBaCoFeO5+δ–Sm0.2Ce0.8O1.9 (Ln = Pr and Nd) composite cathodes for IT-SOFCs. J Alloys Compd 685:483–491. https://doi.org/10.1016/j.jallcom.2016.05.322

    Article  CAS  Google Scholar 

  16. Zhu C, Liu X, Yi C, Pei L, Wang D, Yan D, Yao K, Lü T, Su W (2010) High-performance PrBaCo2O5+δ–Ce0.8Sm0.2O1.9 composite cathodes for intermediate temperature solid oxide fuel cell. J Power Sources 195(11):3504–3507. https://doi.org/10.1016/j.jpowsour.2009.12.014

    Article  CAS  Google Scholar 

  17. Chen D, Ran R, Shao Z (2010) Assessment of PrBaCo2O5+δ+Sm0.2Ce0.8O1.9 composites prepared by physical mixing as electrodes of solid oxide fuel cells. J Power Sources 195(21):7187–7195. https://doi.org/10.1016/j.jpowsour.2010.05.018

    Article  CAS  Google Scholar 

  18. Zhao L, Shen J, He B, Chen F, Xia C (2011) Synthesis, characterization and evaluation of PrBaCo2−−xFexO5+δ as cathodes for intermediate-temperature solid oxide fuel cells. Int J Hydrogen Energy 36(5):3658–3665. https://doi.org/10.1016/j.ijhydene.2010.12.064

    Article  CAS  Google Scholar 

  19. Che X, Shen Y, Li H, He T (2013) Assessment of LnBaCo1.6Ni0.4O5+δ (Ln = Pr, Nd, and Sm) double-perovskites as cathodes for intermediate-temperature solid-oxide fuel cells. J Power Sources 222:288–293. https://doi.org/10.1016/j.jpowsour.2012.08.044

    Article  CAS  Google Scholar 

  20. Jin FJ, Shen Y, Wang R, He TM (2013) Double-perovskite PrBaCo2/3Fe2/3Cu2/3O5+δ as cathode material for intermediate-temperature solid-oxide fuel cells. J Power Sources 234:244–251. https://doi.org/10.1016/j.jpowsour.2013.01.172

    Article  CAS  Google Scholar 

  21. Chen Y, Yoo S, Choi Y, Kim JH, Ding Y, Pei K, Murphy R, Zhang Y, Zhao B, Zhang W, Chen H, Chen Y, Yuan W, Yang C, Liu M (2018) A highly active, CO2-tolerant electrode for the oxygen reduction reaction. Energy Environ Sci 11:2458–2466. https://doi.org/10.1039/C8EE01140K

    Article  CAS  Google Scholar 

  22. Du Z, Yan C, Zhao H, Zhang Y, Yang C, Yi S, Lu Y, Swierczek K (2017) Effective Ca-doping in Y1−xCaxBaCo2O5+δ cathode materials for intermediate temperature solid oxide fuel cells. J Mater Chem A 5(48):25641–25651. https://doi.org/10.1039/c7ta08954f

    Article  CAS  Google Scholar 

  23. Fu DW, Jin FJ, He TM (2016) A-site calcium-doped Pr1−xCaxBaCo2O5+δ double perovskites as cathodes for intermediate-temperature solid oxide fuel cells. J Power Sources 313:134–141. https://doi.org/10.1016/j.jpowsour.2016.02.071

    Article  CAS  Google Scholar 

  24. Yoo S, Jun A, Ju Y-W, Odkhuu D, Hyodo J, Jeong HY, Park N, Shin J, Ishihara T, Kim G (2014) Development of double-perovskite compounds as cathode materials for low-temperature solid oxide fuel cells. Angew Chem Int Ed 53(48):13064–13067. https://doi.org/10.1002/anie.201407006

    Article  CAS  Google Scholar 

  25. Choi S, Park S, Shin J, Kim G (2015) The effect of calcium doping on the improvement of performance and durability in a layered perovskite cathode for intermediate-temperature solid oxide fuel cells. J Mater Chem A 3(11):6088–6095. https://doi.org/10.1039/c4ta05684a

    Article  CAS  Google Scholar 

  26. Ding H, Xue X (2010) PrBa0.5Sr0.5Co2O5+δ layered perovskite cathode for intermediate temperature solid oxide fuel cells. Electrochim Acta 55(11):3812–3816. https://doi.org/10.1016/j.electacta.2010.01.104

    Article  CAS  Google Scholar 

  27. Kim JH, Cassidy M, Irvine JTS, Bae J (2009) Advanced electrochemical properties of LnBa0.5Sr0.5Co2O5 + δ (Ln = Pr, Sm, and Gd) as cathode materials for IT-SOFC. J Electrochem Soc 156(6):B682–B689. https://doi.org/10.1149/1.3110989

    Article  CAS  Google Scholar 

  28. Choi S, Yoo S, Kim J, Park S, Jun A, Sengodan S, Kim J, Shin J, Jeong HY, Choi Y, Kim G, Liu M (2013) Highly efficient and robust cathode materials for low-temperature solid oxide fuel cells: PrBa0.5Sr0.5Co2−xFexO5+δ. Sci Rep 3:2426. https://doi.org/10.1038/srep02426

    Article  Google Scholar 

  29. Sun L, Li H, Zhao J, Wang G, Huo L, Zhao H (2019) Effects of calcium doping to oxygen reduction activity on Pr2−xCaxNiMnO6 cathode. J Alloys Compd 777:1319–1326. https://doi.org/10.1016/j.jallcom.2018.11.046

    Article  CAS  Google Scholar 

  30. Finsterbusch M, Lussier A, Schaefer JA, Idzerda YU (2012) Electrochemically driven cation segregation in the mixed conductor La0.6Sr0.4Co0.2Fe0.8O3−δ. Solid State Ionics 212:77–80. https://doi.org/10.1016/j.ssi.2012.02.006

    Article  CAS  Google Scholar 

  31. Wei B, Schroeder M, Martin M (2018) Surface cation segregation and chromium deposition on the double-perovskite oxide PrBaCo2O5+δ. ACS Appl Mater Interfaces 10(10):8621–8629. https://doi.org/10.1021/acsami.7b17881

    Article  CAS  Google Scholar 

  32. Jin F, Xu H, Long W, Shen Y, He T (2013) Characterization and evaluation of double perovskites LnBaCoFeO5+δ (Ln = Pr and Nd) as intermediate-temperature solid oxide fuel cell cathodes. J Power Sources 243:10–18. https://doi.org/10.1016/j.jpowsour.2013.05.187

    Article  CAS  Google Scholar 

  33. Jin F, Li J, Wang Y, Chu X, Xu M, Zhai Y, Zhang Y, Fang W, Zou P, He T (2018) Evaluation of Fe and Mn co-doped layered perovskite PrBaCo2/3Fe2/3Mn1/2O5+δ as a novel cathode for intermediate-temperature solid-oxide fuel cell. Ceram Int 44(18):22489–22496. https://doi.org/10.1016/j.ceramint.2018.09.018

    Article  CAS  Google Scholar 

  34. Zou J, Park J, Kwak B, Yoon H, Chung J (2012) Effect of Fe doping on PrBaCo2O5+δ as cathode for intermediate-temperature solid oxide fuel cells. Solid State Ionics 206:112–119. https://doi.org/10.1016/j.ssi.2011.10.025

    Article  CAS  Google Scholar 

  35. Kim YN, Kim JH, Manthiram A (2010) Effect of Fe substitution on the structure and properties of LnBaCo2−xFexO5+δ (Ln = Nd and Gd) cathodes. J Power Sources 195(19):6411–6419. https://doi.org/10.1016/j.jpowsour.2010.03.100

    Article  CAS  Google Scholar 

  36. Klyndyuk AI, Chizhova EA (2008) Effect of cation deficiency on the structure and properties of layered lanthanum barium ferrocuprate. Russ J Inorg Chem 53(4):524–529. https://doi.org/10.1134/s0036023608040074

    Article  Google Scholar 

  37. Shannon R (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A Cryst Phys Diffr Theor Gen Crystallogr 32(5):751–767

    Article  Google Scholar 

  38. Zhang W, Shiraiwa M, Wang N, Ma T, Fujii K, Niwa E, Yashima M (2018) Pr/Ba cation-disordered perovskite Pr2/3Ba1/3CoO3−δ as a new bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. J Ceram Soc Jpn 126(10):814–819. https://doi.org/10.2109/jcersj2.18076

    Article  CAS  Google Scholar 

  39. Norman C, Leach C (2011) In situ high temperature X-ray photoelectron spectroscopy study of barium strontium iron cobalt oxide. J Membr Sci 382(1):158–165. https://doi.org/10.1016/j.memsci.2011.08.006

    Article  CAS  Google Scholar 

  40. Koenig MF, Grant JT (1985) XPS studies of the chemical state of Ba on the surface of impregnated tungsten dispenser cathodes. Appl Surf Sci 20(4):481–496. https://doi.org/10.1016/0378-5963(85)90169-2

    Article  CAS  Google Scholar 

  41. O’Connell M, Norman AK, Hüttermann CF, Morris MA (1999) Catalytic oxidation over lanthanum-transition metal perovskite materials. Catal Today 47(1–4):123–132. https://doi.org/10.1016/S0920-5861(98)00291-0

    Article  Google Scholar 

  42. Meza E, Ortiz J, Ruíz-León D, Marco JF, Gautier JL (2012) Lithium-nickel cobalt oxides with spinel structure prepared at low temperature. XRD, XPS, and EIS measurements. Mater Lett 70:189–192. https://doi.org/10.1016/j.matlet.2011.11.108

    Article  CAS  Google Scholar 

  43. Ghaffari M, Shannon M, Hui H, Tan OK, Irannejad A (2012) Preparation, surface state and band structure studies of SrTi(1−x)Fe(x)O(3−δ) (x = 0–1) perovskite-type nano structure by X-ray and ultraviolet photoelectron spectroscopy. Surf Sci 606(5–6):670–677. https://doi.org/10.1016/j.susc.2011.12.013

    Article  CAS  Google Scholar 

  44. Li K, Yin M, Wang Z, Chen X, Zhu T, Wang J, Dewangan N, Yu Y, Zhong Q, Kawi S (2018) Effect of Small Nb-doping amount on the performance of BaCoO3−δ-based perovskite as bifunctional oxygen catalysts. ChemistrySelect 3(44):12424–12429. https://doi.org/10.1002/slct.201802906

    Article  CAS  Google Scholar 

  45. Shao Z, Xiong G, Tong J, Dong H, Yang W (2001) Ba effect in doped Sr(Co0.8Fe0.2)O3−δ on the phase structure and oxygen permeation properties of the dense ceramic membranes. Sep Purif Technol 25(1–3):419–429. https://doi.org/10.1016/s1383-5866(01)00071-5

    Article  CAS  Google Scholar 

  46. Wang H, Li G, Guan X, Zhao M, Li L (2011) Lightly doping Ca2+ in perovskite PrCoO3 for tailored spin states and electrical properties. Phys Chem Chem Phys 13(39):17775–17784. https://doi.org/10.1039/C1CP21562K

    Article  CAS  Google Scholar 

  47. Zhao C, Zhou Q, Zhang T, Qu L, Yang X, Wei T (2019) Preparation and electrochemical properties of La1.5Pr0.5NiO4 and La1.5Pr0.5Ni0.9Cu0.1O4 cathode materials for intermediate-temperature solid oxide fuel cells. Mater Res Bull 113:25–30. https://doi.org/10.1016/j.materresbull.2019.01.016

    Article  CAS  Google Scholar 

  48. Steele BCH (1996) Survey of materials selection for ceramic fuel cells II. Cathodes and anodes. Solid State Ionics 86-88(Part 2):1223–1234. https://doi.org/10.1016/0167-2738(96)00291-3

    Article  CAS  Google Scholar 

  49. Kim J-D, Kim G-D, Moon J-W, Park Y-i, Lee W-H, Kobayashi K, Nagai M, Kim C-E (2001) Characterization of LSM–YSZ composite electrode by AC impedance spectroscopy. Solid State Ionics 143(3):379–389. https://doi.org/10.1016/S0167-2738(01)00877-3

    Article  CAS  Google Scholar 

  50. Mauvy F, Bassat JM, Boehm E, Manaud JP, Dordor P, Grenier JC (2003) Oxygen electrode reaction on Nd2NiO4+δ cathode materials: impedance spectroscopy study. Solid State Ionics 158(1):17–28. https://doi.org/10.1016/S0167-2738(02)00689-6

    Article  CAS  Google Scholar 

  51. Meng Y, Sun L, Gao J, Tan W, Chen C, Yi J, Bouwmeester HJM, Sun Z, Brinkman KS (2019) Insights into the CO2 stability-performance trade-off of antimony-doped SrFeO3−δ perovskite cathode for solid oxide fuel cells. ACS Appl Mater Interfaces 11(12):11498–11506. https://doi.org/10.1021/acsami.9b00876

    Article  CAS  Google Scholar 

  52. Zhang Y, Yang G, Chen G, Ran R, Zhou W, Shao Z (2016) Evaluation of the CO2 poisoning effect on a highly active cathode SrSc0.175Nb0.025Co0.8O3−δ in the oxygen reduction reaction. ACS Appl Mater Interfaces 8(5):3003–3011. https://doi.org/10.1021/acsami.5b09780

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (21,703,017, 51702021), the “111” Project of China (D17017), the Developing Project of Science and Technology of Jilin Province (20180519017JH, 202002040JC, 20200201060JC) and the International Science and Technology Cooperation Project of Jilin Province (20190701029GH).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fangjun Jin or Jinhua Li.

Additional information

Handling Editor: David Cann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, F., Liu, X., Chu, X. et al. Effect of nonequivalent substitution of Pr3+/4+ with Ca2+ in PrBaCoFeO5+δ as cathodes for IT-SOFC. J Mater Sci 56, 1147–1161 (2021). https://doi.org/10.1007/s10853-020-05375-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05375-y

Navigation