Skip to main content

Advertisement

Log in

Biomass applied in supercapacitor energy storage devices

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The ever-increasing energy demand and fossil energy consumption accompanied by the worsening environmental pollution urge the invention and development of new, environmentally friendly and renewable high-performance energy devices. Among them, the supercapacitor has received massive attention, and the various electrode materials and polymer electrolytes have been exploited. The carbon-based electrodes and electrolytes derived from biomass are highly trusted as idea candidates for supercapacitors due to their attractive structure, abundance, low cost, renewability, and environmentally friendliness. This review will highlight the available characteristics of materials, synthetic strategies, and improvement approach of biomass-derived electrodes and electrolytes for application in supercapacitors. Future relative research trends also will be briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are 2025 included in this published article.

References

  1. Yan J, Wang Q, Wei T et al (2014) Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energy Mater 4(4):1300816

    Google Scholar 

  2. Yu D, Goh K, Wang H et al (2014) Scalable synthesis of hierarchically structured carbon nanotube–graphene fibres for capacitive energy storage. Nat Nanotechnol 9(7):555–562

    CAS  Google Scholar 

  3. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38(9):2520–2531

    CAS  Google Scholar 

  4. Wang Y, Liu J, Xie M et al (2020) Fabrication of NiHPO3·H2O nanorods as cathode material for aqueous asymmetric supercapacitor. J Alloy Compd 843(30):155921

    CAS  Google Scholar 

  5. Wan L, Liu J, Li X et al (2020) Fabrication of core-shell NiMoO4@MoS2 nanorods for high-performance asymmetric hybrid supercapacitors. Int J Hydrogen Energy 45(7):4521–4533

    CAS  Google Scholar 

  6. Chen J, Du C, Zhang Y et al (2019) Constructing porous organic polymer with hydroxyquinoline as electrochemical-active unit for high-performance supercapacitor. Polymer 162:43–49

    CAS  Google Scholar 

  7. Raj CJ, Rajesh M, Manikandan R et al (2018) High electrochemical capacitor performance of oxygen and nitrogen enriched activated carbon derived from the pyrolysis and activation of squid gladius chitin. J Power Source 386(MAY15):66–76

    CAS  Google Scholar 

  8. Schlee P, Hosseinaei O, Baker D (2019) From waste to wealth: from kraft lignin to free-standing supercapacitors. Carbon 145:470–480

    CAS  Google Scholar 

  9. Wang Y, Liu R, Tian Y et al (2020) Heteroatoms-doped hierarchical porous carbon derived from chitin for flexible all-solid-state symmetric supercapacitors. Chem Eng J 384:123263

    CAS  Google Scholar 

  10. Zhang Z, Li L, Qing Y et al (2019) Manipulation of nanoplate structures in carbonized cellulose nanofibril aerogel for high-performance supercapacitor. J Phys Chem C 123(38):23374–23381

    CAS  Google Scholar 

  11. Hao P, Ma X, Xie J et al (2018) Removal of toxic metal ions using chitosan coated carbon nanotube composites for supercapacitors. Sci China Chem 61(7):797–805

    CAS  Google Scholar 

  12. Chen Y, Liu Y, Dong Y et al (2020) Synthesis of sandwich-like graphene@mesoporous nitrogen-doped carbon nanosheets for application in high-performance supercapacitors. Nanotechnology 31:24001

    CAS  Google Scholar 

  13. Wan L, Wei W, Xie M et al (2019) Nitrogen, sulfur co-doped hierarchically porous carbon from rape pollen as high-performance supercapacitor electrode. Electrochim Acta 311:72–82

    CAS  Google Scholar 

  14. Wan L, Song P, Liu J et al (2019) Facile synthesis of nitrogen self-doped hierarchical porous carbon derived from pine pollen via MgCO3 activation for high-performance supercapacitors. J Power Source 438:227013

    CAS  Google Scholar 

  15. Wan L, Chen D, Liu J et al (2020) Facile preparation of porous carbons derived from orange peel via basic copper carbonate activation for supercapacitors. J Alloys Compd 823:153747

    CAS  Google Scholar 

  16. Wan L, Li X, Li N et al (2019) Multi-heteroatom-doped hierarchical porous carbon derived from chestnut shell with superior performance in supercapacitors. J Alloy Compd 790:760–771

    CAS  Google Scholar 

  17. Wan L, Hu S, Liu J et al (2020) Enhancing the energy density of supercapacitors by introducing nitrogen species into hierarchical porous carbon derived from camellia pollen. Ionics 26(5):2549–2561

    CAS  Google Scholar 

  18. Zhong C, Deng Y, Hu W et al (2015) A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev 44(21):7484–7539

    CAS  Google Scholar 

  19. Navarra Ma DBCS, Maria N, Chiara DB, Judith SM et al (2015) Synthesis and characterization of cellulose-based hydrogels to be used as gel electrolytes. Membranes 5(4):810–823

    Google Scholar 

  20. Shen X, Shamshina JL, Berton P et al (2016) Hydrogels based on cellulose and chitin: fabrication, properties, and applications. Green Chem 18:53–75

  21. Gao K, Shao Z, Li J et al (2013) Cellulose nanofiber–graphene all solid-state flexible supercapacitors. J Mater Chem A 1(1):63–67

    CAS  Google Scholar 

  22. Chen Z, Wang X, Ding Z et al (2019) Biomass-based hierarchical porous carbon for supercapacitors: effect of aqueous and organic electrolytes on the electrochemical performance. Chemsuschem 12(23):5099–5110

    CAS  Google Scholar 

  23. Lu H, Zhuang L, Gaddam RR (2019) Microcrystalline cellulose-derived porous carbons with defective sites for electrochemical applications. J Mater Chem A 7(39):22579–22587

    CAS  Google Scholar 

  24. Cui Y, Liu W, Wang X (2019) Bioinspired mineralization under freezing conditions: an approach to fabricate porous carbons with complicated architecture and superior k+ storage performance. ACS Nano 13(10):11582–11592

    CAS  Google Scholar 

  25. Zhang Q, Chaoji C et al (2019) Nanocellulose-enabled, all-nanofiber, high-performance supercapacitor. ACS Appl Mater & Interfaces 11(6):5919–5927

    CAS  Google Scholar 

  26. Wan C, Jiao Y, Bao W et al (2019) Self-stacked multilayer FeOCl supported on a cellulose-derived carbon aerogel: a new and high-performance anode material for supercapacitors. J Mater Chem A 7(16):9556–9564

    CAS  Google Scholar 

  27. Yang Q, Yang J, Gao Z et al (2019) Carbonized cellulose nanofibril/graphene oxide composite aerogels for high-performance supercapacitors. ACS Appl Energy Mater 3(1):1145–1151

    Google Scholar 

  28. Shu Y, Bai Q, Fu G et al (2020) Hierarchical porous carbons from polysaccharides carboxymethyl cellulose, bacterial cellulose, and citric acid for supercapacitor. Carbohyd Polym 227:115346

    CAS  Google Scholar 

  29. Chen H, Liu T, Mou J et al (2019) Free-standing N-self-doped carbon nanofiber aerogels for high-performance all-solid-state supercapacitors. Nano Energy 63:103836

    CAS  Google Scholar 

  30. Lei W, Zhang H, Liu D et al (2019) Fabrication of nitrogen and sulfur co-doped carbon nanofibers with three-dimensional architecture for high performance supercapacitors. Appl Surf ence 495:143572

    CAS  Google Scholar 

  31. Lee B, Jeong C, Hong S (2020) Eco-friendly fabrication of porous carbon monoliths from water-soluble carboxymethyl cellulose for supercapacitor applications. J Ind Eng Chem 82:367–373

    CAS  Google Scholar 

  32. Meng Q, Chen W, Wu L et al (2019) A strategy of making waste profitable: nitrogen doped cigarette butt derived carbon for high performance supercapacitors. Energy 189:116241

    CAS  Google Scholar 

  33. Hong P, Liu X, Zhang X et al (2019) Hierarchically porous carbon derived from the activation of waste chestnut shells by potassium bicarbonate (KHCO3) for high-performance supercapacitor electrode. Int J Energy Res 44(2):988–999

    Google Scholar 

  34. Chaturvedi V, Usangonvkar S, Shelke MV (2019) Synthesis of high surface area porous carbon from anaerobic digestate and it's electrochemical study as an electrode material for ultracapacitors. RSC Adv 9(62):36343–36350

    CAS  Google Scholar 

  35. Wan L, Li N, Li X et al (2019) One-step synthesis of N, S-codoped porous graphitic carbon derived from lotus leaves for high-performance supercapacitors. Ionics 25(10):4891–4903

    CAS  Google Scholar 

  36. Kim C, Zhu C, Aoki Y (2018) Heteroatom-doped porous carbon with tunable pore structure and high specific surface area for high performance supercapacitors. Electrochim Acta 314:173–187

    Google Scholar 

  37. Ding C, Huang L, Yan X et al (2019) Robust, superelastic hard carbon with in situ ultrafine crystals. Adv Funct Mater 30(3):1907486

    Google Scholar 

  38. Song P, He X, Shen X et al (2019) Dissolution-assistant all-in-one synthesis of N and S dual-doped porous carbon for high-performance supercapacitors. Adv Powder Technol 30(10):2211–2217

    CAS  Google Scholar 

  39. Wang M, Zhang J, Yi X et al (2020) High-performance asymmetric supercapacitor made of NiMoO4 nanorods@Co3O4 on a cellulose-based carbon aerogel. Beilstein J Nanotechnol 11(1):240–251

    Google Scholar 

  40. Zhao Y, Liu Y, Du J (2019) Facile synthesis of interconnected carbon network decorated with Co3O4 nanoparticles for potential supercapacitor applications. Appl Surf Sci 487:442–451

    CAS  Google Scholar 

  41. Zhuo H, Hu Y, Chen Z (2019) Cellulose carbon aerogel/PPy composites for high-performancesupercapacitor. Carbohydr Polym 215:322–329

    CAS  Google Scholar 

  42. Zhang X, Li H, Zhang W (2019) In-situ growth of polypyrrole onto bamboo cellulose-derived compressible carbon aerogels for high performance supercapacitors. Electrochim Acta 301:55–62

    CAS  Google Scholar 

  43. Zheng S, Cui Y, Zhang J et al (2019) Nitrogen doped microporous carbon nanospheres derived from chitin nanogels as attractive materials for supercapacitors. RSC Adv 9(19):1976–1982

    Google Scholar 

  44. Ding B, Huang S, Pang K et al (2018) Nitrogen-enriched carbon nanofiber aerogels derived from marine chitin for energy storage and environmental remediation. ACS Sustain Chem Eng 6(1):177–185

    CAS  Google Scholar 

  45. Jia H, Sun J, Xie X et al (2019) Cicada slough-derived heteroatom incorporated porous carbon for supercapacitor: Ultra-high gravimetric capacitance. Carbon 143:309–317

    CAS  Google Scholar 

  46. Zhou J, Bao L, Wu S et al (2017) Chitin based heteroatom-doped porous carbon as electrode materials for supercapacitors. Carbohydr Polym 173:321–329

    CAS  Google Scholar 

  47. Gao L, Xiong L, Xu D et al (2018) Distinctive construction of chitin-derived hierarchically porous carbon microspheres/polyaniline for high-rate supercapacitors. ACS Appl Mater Interfaces 10(34):28918–28927

    CAS  Google Scholar 

  48. Yuan M, Zhang Y, Niu B et al (2019) Chitosan-derived hybrid porous carbon with the novel tangerine pith-like surface as supercapacitor electrode. J Mater Sci 54(23):14456–14468. https://doi.org/10.1007/s10853-019-03911-z

    Article  CAS  Google Scholar 

  49. Genovese M, Wu H, Virya A et al (2018) Ultrathin all-solid-state supercapacitor devices based on chitosan activated carbon electrodes and polymer electrolytes. Electrochim Acta 273:392–401

    CAS  Google Scholar 

  50. Zhang Y, Shi Y, Yan B et al (2019) Flocculant-assisted synthesis of graphene-like carbon nanosheets for oxygen reduction reaction and supercapacitor. Nanomaterials 9(8):1135

    CAS  Google Scholar 

  51. Cheng J, Xu Q, Wang X et al (2019) Ultrahigh-surface-area nitrogen-doped hierarchically porous carbon materials derived from chitosan and betaine hydrochloride sustainable precursors for high-performance supercapacitors. Sustain Energy Fuels 3:1215–1224

    CAS  Google Scholar 

  52. Tong X, Chen Z, Zhuo H (2019) Tailoring the physicochemical properties of chitosan-derived N-doped carbon by controlling hydrothermal carbonization time for high-performance supercapacitor application. Carbohydr Polym 207:764–774

    CAS  Google Scholar 

  53. Wu Q, Gao M, Cao S (2019) Chitosan-based layered carbon materials prepared via ionic-liquid-assisted hydrothermal carbonization and their performance study. J Taiwan Inst Chem Eng 101:231–243

    CAS  Google Scholar 

  54. Zhou T, Gao W, Gao Y et al (2019) Simultaneous determination of catechol and hydroquinone using non-enzymatic Co3O4@carbon core/shell composites based sensor. J Electrochem Soc 166(12):B1069–B1078

    CAS  Google Scholar 

  55. Liang J, Qu T, Kun X et al (2018) Microwave assisted synthesis of camellia oleifera shell-derived porous carbon with rich oxygen functionalities and superior supercapacitor performance. Appl Surf Sci 436:934–940

    CAS  Google Scholar 

  56. Bo X, Xiang K, Zhang Y et al (2019) Microwave-assisted conversion of biomass wastes to pseudocapacitive mesoporous carbon for high-performance supercapacitor. J Energy Chem 39:1–7

    Google Scholar 

  57. Chen W, Wang X, Liu C et al (2020) Rapid single-step synthesis of porous carbon from an agricultural waste for energy storage application. Waste Manag 102:330–339

    CAS  Google Scholar 

  58. Chen W, Luo M, Wang X et al (2019) Rapid synthesis of chitin-based porous carbons with high yield, high nitrogen retention, and low cost for high-rate supercapacitors. Int J Energy Res 44(2):1167–1178

    Google Scholar 

  59. Chen W, Luo M, Liu C (2019) Fast microwave self-activation from chitosan hydrogel bead to hierarchical and O, N co-doped porous carbon at an air-free atmosphere for high-rate electrodes material. Carbohydr Polym 219:229–239

    CAS  Google Scholar 

  60. Huo S, Liu M, Wu L et al (2018) Methanesulfonic acid-assisted synthesis of N/S co-doped hierarchically porous carbon for high performance supercapacitors. J Power Sources 387(may31):81–90

    CAS  Google Scholar 

  61. Lin Z, Xiang X, Peng S et al (2018) Facile synthesis of chitosan-based carbon with rich porous structure for supercapacitor with enhanced electrochemical performance. J Electroanal Chem 823:563–572

    CAS  Google Scholar 

  62. Ken CAJL (2020) Ingenious preparation of N/NiOx co-doped hierarchical porous carbon nanosheets derived from chitosan nanofibers for high performance supercapacitors. Nanotechnology 31:33

    Google Scholar 

  63. Liu Y, Xiang C, Chu H et al (2020) Binary Co–Ni oxide nanoparticle-loaded hierarchical graphitic porous carbon for high-performance supercapacitors. J Mater Sci Technol 37:135–142. https://doi.org/10.1016/j.jmst.2019.08.015

    Article  Google Scholar 

  64. Lin Z, Xiang X, Chen K et al (2019) Facile synthesis of MnO2 nanorods grown on porous carbon for supercapacitor with enhanced electrochemical performance. J Colloid Interface Sci 540:466–475

    CAS  Google Scholar 

  65. Al-Farraj ES, Alhabarah AN, Ahmad J et al (2018) Fabrication of hybrid nanocomposite derived from chitosan as efficient electrode materials for supercapacitor. Int J Biol Macromol 120:2271–2278

    CAS  Google Scholar 

  66. Wang H, Ma N, Cao Y et al (2019) Cobalt and cobalt oxide supported on nitrogen-doped porous carbon as electrode materials for hydrogen evolution reaction. Int J Hydrogen Energy 44(7):3649–3657

    CAS  Google Scholar 

  67. Tan W, Fu R, Ji H et al (2018) Preparation of nitrogen-doped carbon using graphene Quantum dots-chitosan as the precursor and its supercapacitive behaviors. Int J Biol Macromol 112:561–566

    CAS  Google Scholar 

  68. Zhong S, Kitta M, Xu Q (2019) Hierarchically porous carbons derived from metal-organic framework/chitosan composites for high-performance supercapacitors. Chem Asian J 14(20):3583–3589

    CAS  Google Scholar 

  69. Liu Y, Liu L, Tan Y et al (2018) Carbon nanosphere@vanadium nitride electrode materials derived from metal-organic nanospheres self-assembled by NH4VO3, chitosan, and amphiphilic block copolymer. Electrochim Acta 262:66–73

    CAS  Google Scholar 

  70. Liu X, Liu X, Sun B et al (2018) Carbon materials with hierarchical porosity: effect of template removal strategy and study on their electrochemical properties. Carbon 130:680–691

    CAS  Google Scholar 

  71. Li Z, Yang L, Cao H et al (2017) Carbon materials derived from chitosan/cellulose cryogel-supported zeolite imidazole frameworks for potential supercapacitor application. Carbohydr Polym 175:223–230

    CAS  Google Scholar 

  72. Yue J, Li B, Ju T et al (2018) Polyhedron carbon-scale stacking foldable fibrous film electrode with high capacitance performance from chitin fiber cloth for super flexible supercapacitors. Mater Res Express 6(1):15602

    Google Scholar 

  73. Liu Q, Chen Z, Jing S (2018) A foldable composite electrode with excellent electrochemical performance using microfibrillated cellulose fibers as a framework. J Mater Chem A 6(41):20338–20346

    CAS  Google Scholar 

  74. Zeng L, Lou X, Zhang J et al (2019) Carbonaceous mudstone and lignin-derived activated carbon and its application for supercapacitor electrode. Surf Coat Technol 357:580–586

    CAS  Google Scholar 

  75. Zhang K, Liu M, Zhang T (2019) High-performance supercapacitor energy storage using a carbon material derived from lignin by bacterial activation before carbonization. J Mater Chem A 7(47):26838–26848

    CAS  Google Scholar 

  76. Song X, Ma X, Li Y et al (2019) Tea waste derived microporous active carbon with enhanced double-layer supercapacitor behaviors. Appl Surf Sci 487:189–197

    CAS  Google Scholar 

  77. Tisawat N, Samart C, Jaiyong P (2019) Enhancement performance of carbon electrode for supercapacitors by quinone derivatives loading via solvent-free method. Appl Surf Sci 491:784–791

    CAS  Google Scholar 

  78. Wang D, Nai J, Xu L et al (2019) A potassium formate activation strategy for the synthesis of ultrathin graphene-like porous carbon nanosheets for advanced supercapacitor applications. ACS Sustain Chem Eng 7(23):18901–18911

    CAS  Google Scholar 

  79. Zou Z, Lei Y, Li Y et al (2019) Nitrogen-doped hierarchical meso/microporous carbon from bamboo fungus for symmetric supercapacitor applications. Molecules 24(20):3677

    CAS  Google Scholar 

  80. Sun D, Yu X, Ji X (2019) Nickel/woodceramics assembled with lignin-based carbon nanosheets and multilayer graphene as supercapacitor electrode. J Alloys Compd 805:327–337

    CAS  Google Scholar 

  81. Wang X, Liu Y, Chen M et al (2019) Direct microwave conversion from lignin to micro/meso/macroporous carbon for high-performance symmetric supercapacitors. ChemElectroChem 6(18):4789–4800

    CAS  Google Scholar 

  82. Chen W, Wang X, Luo M et al (2019) Fast one-pot microwave preparation and plasma modification of porous carbon from waste lignin for energy storage application. Waste Manag 89:129–140

    CAS  Google Scholar 

  83. Chen W, Wang X, Feizbakhshan M et al (2019) Preparation of lignin-based porous carbon with hierarchical oxygen-enriched structure for high-performance supercapacitors. J Colloid Interface Sci 540:524–534

    CAS  Google Scholar 

  84. Cai T, Kuang L, Wang C et al (2019) Cellulose as an adhesive for the synthesis of carbon aerogel with a 3D hierarchical network structure for capacitive energy storage. ChemElectroChem 6(9):2586–2594

    CAS  Google Scholar 

  85. Zhang Y, Zhao C, Ong WK et al (2019) Ultrafast-freezing-assisted mild preparation of biomass-derived, hierarchically porous, activated carbon aerogels for high-performance supercapacitors. ACS Sustain Chem Eng 7(1):403–411

    CAS  Google Scholar 

  86. Wang S, Yu Y, Luo S et al (2019) All-solid-state supercapacitors from natural lignin-based composite film by laser direct writing. Appl Phys Lett 115(8):83904

    Google Scholar 

  87. Cui L, Cheng C, Peng F (2019) A ternary MnO2-deposited RGO/lignin-based porous carbon composite electrode for flexible supercapacitor applications. New J Chem 43(35):14084–14092

    CAS  Google Scholar 

  88. Jiang X, Liu C, Shi G et al (2019) The preparation of liquefied bio-stalk carbon nanofibers and their application in supercapacitors. RSC Adv 9(40):23324–23333

    CAS  Google Scholar 

  89. Perera Jayawickramage RA, Balkus KJ, Ferraris JP (2019) Binder free carbon nanofiber electrodes derived from polyacrylonitrile-lignin blends for high performance supercapacitors. Nanotechnology 30(35):355402

    Google Scholar 

  90. Dai Z, Ren P, An Y (2019) Nitrogen-sulphur Co-doped graphenes modified electrospunlignin/polyacrylonitrile-based carbon nanofiber as high performance supercapacitor. J Power Sour 437:226937

    CAS  Google Scholar 

  91. Yun SI, Kim SH, Kim DW et al (2019) Facile preparation and capacitive properties of low-cost carbon nanofibers with ZnO derived from lignin and pitch as supercapacitor electrodes. Carbon 149:637–645

    CAS  Google Scholar 

  92. Cao Q, Zhu M, Chen J et al (2020) Novel lignin-cellulose-based carbon nanofibers as high-performance supercapacitors. ACS Appl Mater Interfaces 12(1):1210–1221

    CAS  Google Scholar 

  93. Liu F, Wang Z, Zhang H et al (2019) Nitrogen, oxygen and sulfur co-doped hierarchical porous carbons toward high-performance supercapacitors by direct pyrolysis of kraft lignin. Carbon 149:105–116

    CAS  Google Scholar 

  94. Tian J, Liu C, Lin C (2019) Constructed nitrogen and sulfur codoped multilevel porous carbon from lignin for high-performance supercapacitors. J Alloys Compd 789:435–442

    CAS  Google Scholar 

  95. Zhang W, Zou Y, Yu C (2019) Nitrogen-enriched compact biochar-based electrode materials for supercapacitors with ultrahigh volumetric performance. J Power Source 439:227067

    CAS  Google Scholar 

  96. Sun S, Ding B, Liu R et al (2019) Facile synthesis of three-dimensional interconnected porous carbon derived from potassium alginate for high performance supercapacitor. J Alloys Compd 803:401–406

    CAS  Google Scholar 

  97. Wang D, Nai J, Xu L et al (2019) Gunpowder chemistry-assisted exfoliation approach for the synthesis of porous carbon nanosheets for high-performance ionic liquid based supercapacitors. J Energy Storage 24((Aug)):100761–100764

    Google Scholar 

  98. Bai Q, Xiong Q, Li C et al (2018) Hierarchical porous carbons from a sodium alginate/bacterial cellulose composite for high-performance supercapacitor electrodes. Appl Surf ence 455((OCT.15)):795–807

    CAS  Google Scholar 

  99. Zhao Y, Wei M, Zhu Z et al (2020) Facile preparation of N-O codoped hierarchically porous carbon from alginate particles for high performance supercapacitor. J Colloid Interface Sci 563:414–425

    CAS  Google Scholar 

  100. Hu J, He W, Qiu S et al (2019) Nitrogen-doped hierarchical porous carbons prepared via freeze-drying assisted carbonization for high-performance supercapacitors. Appl Surf Sci 496:143643

    CAS  Google Scholar 

  101. Huang J, Zhang W, Huang H et al (2019) Facile synthesis of N, S-codoped hierarchically porous carbon with high volumetric pseudocapacitance. ACS Sustain Chem Eng 7(19):16710–16719

    CAS  Google Scholar 

  102. Ye Z, Wang F, Jia C et al (2018) Biomass-based O, N-codoped activated carbon aerogels with ultramicropores for supercapacitors. J Mater Sci 53(17):12374–12387. https://doi.org/10.1007/s10853-018-2487-x

    Article  CAS  Google Scholar 

  103. Cui Y, Wang H, Xu X et al (2018) Nitrogen-doped porous carbons derived from a natural polysaccharide for multiple energy storage devices. Sustain Energy Fuels 2:381–391

    CAS  Google Scholar 

  104. Wang K, Shen W (2019) A facile two-step method for the fabrication of carbon coated manganese oxide nanostructure as a binder-free supercapacitor electrode. Mater Lett 247:106–110

    CAS  Google Scholar 

  105. Zhai Z, Ren B, Xu Y et al (2019) Green and facile fabrication of Cu-doped carbon aerogels from sodium alginate for supercapacitors. Org Electron 70:246–251

    CAS  Google Scholar 

  106. Li J, Sun K, Leng C et al (2018) Zipping assembly of an Fe3O4/carbon nanosheet composite as a high-performance supercapacitor electrode material. RSC Adv 8(65):37417–37423

    CAS  Google Scholar 

  107. Gao Y, Xia Y, Wan H et al (2019) Enhanced cycle performance of hierarchical porous sphere MnCo2O4 for asymmetric supercapacitors. Electrochim Acta 301:294–303

    CAS  Google Scholar 

  108. Cao J, Zhu C, Aoki Y et al (2018) Starch-derived hierarchical porous carbon with controlled porosity for high performance supercapacitors. ACS Sustain Chem Eng 6(6):7292–7303

    CAS  Google Scholar 

  109. Samdani KJ, Kim SH, Park JH et al (2019) Morphology-controlled synthesis of Co3O4 composites with bio-inspired carbons as high-performance supercapacitor electrode materials. J Ind Eng Chem 74:96–102

    CAS  Google Scholar 

  110. Liu M, Lu C, Xu Y (2019) Three-dimensional interconnected reticular porous carbon from corn starch by a sample sol-gel method toward high-performance supercapacitors with aqueous and ionic liquid electrolytes. ACS Sustain Chem Eng 7(22):18690–18699

    CAS  Google Scholar 

  111. Zhong Y, Shi T, Huang Y et al (2018) One-step synthesis of porous carbon derived from starch for all-carbon binder-free high-rate supercapacitor. Electrochim Acta 269:676–685

    CAS  Google Scholar 

  112. Wang P, Wang S, Zhang X (2020) Rational construction of CoO/CoF2 coating on burnt-pot inspired 2D CNs as the battery-like electrode for supercapacitors. J Alloys Compd 819:153374

    CAS  Google Scholar 

  113. Xing L, Chen X, Tan Z et al (2019) Synthesis of Porous Carbon Material with Suitable Graphitization Strength for High Electrochemical Capacitors. ACS Sustainable Chem Eng 7(7):6601–6610

    CAS  Google Scholar 

  114. Guo J, Guo H, Zhang L et al (2018) Hierarchically porous carbon as a high-rate and long-life electrode material for high-performance supercapacitors. ChemElectroChem 5(5):770–777

    CAS  Google Scholar 

  115. Kasturi PR, Ramasamy H, Meyrick D et al (2019) Preparation of starch-based porous carbon electrode and biopolymer electrolyte for all solid-state electric double layer capacitor. J Colloid Interface Sci 554:142–156

    CAS  Google Scholar 

  116. Yu P, Wang Q, Zheng L et al (2019) Construction of ultrathin nitrogen-doped porous carbon nanospheres coated with polyaniline nanorods for asymmetric supercapacitors. Front Chem 7:455

    CAS  Google Scholar 

  117. Vijayakumar M, Adduru J, Rao TN et al (2018) Conversion of solar energy into electrical energy storage: supercapacitor as an ultrafast energy-storage device made from biodegradable agar-agar as a novel and low-cost carbon precursor. Global Challenges 2(10):1800037

    Google Scholar 

  118. Hu X, Wang Y, Ding B et al (2019) A novel way to synthesize nitrogen doped porous carbon materials with high rate performance and energy density for supercapacitors. J Alloys Compd 785:110–116

    CAS  Google Scholar 

  119. Xie T, Lv W, Wei W et al (2013) A unique carbon with a high specific surface area produced by the carbonization of agar in the presence of graphene. Chem Commun 49(88):10427

    CAS  Google Scholar 

  120. Huang Y, Cheng H, Shu D et al (2017) MnO 2 -introduced-tunnels strategy for the preparation of nanotunnel inserted hierarchical-porous carbon as electrode material for high-performance supercapacitors. Chem Eng J 320:634–643

    CAS  Google Scholar 

  121. Demir M, Ashourirad B, Mugumya JH et al (2018) Nitrogen and oxygen dual-doped porous carbons prepared from pea protein as electrode materials for high performance supercapacitors. Int J Hydrogen Energy 43(40):18549–18558

    CAS  Google Scholar 

  122. Song P, Shen X, He W et al (2018) Protein-derived nitrogen-doped hierarchically porous carbon as electrode material for supercapacitors. J Mater Sci Mater Electron 29(14):12206–12215

    CAS  Google Scholar 

  123. Niu B (2019) Protein powder derived porous carbon materials as supercapacitor electrodes. Int J Electrochem Sci 14(4):3253–3264

    CAS  Google Scholar 

  124. Li Z, Xu Z, Tan X et al (2013) Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors. Energy Environ Sci 6(3):871–878

    CAS  Google Scholar 

  125. Yang J, Wang Y, Luo J et al (2018) Highly nitrogen-doped graphitic carbon fibers from sustainable plant protein for supercapacitor. Ind Crops Prod 121:226–235

    CAS  Google Scholar 

  126. Xie Q, Qu S, Zhao Y et al (2019) N/O co-enriched amorphous carbon coated graphene with a sandwiched porous architecture as supercapacitor electrodes with high volumetric specific capacitance. J Mater Sci Mater Electron 30(22):20265–20275

    CAS  Google Scholar 

  127. Ma H, Li C, Zhang M et al (2017) Graphene oxide induced hydrothermal carbonization of egg proteins for high-performance supercapacitors. J Mater Chem A 5(32):17040–17047

    CAS  Google Scholar 

  128. Niu J, Liu M, Xu F et al (2018) Synchronously boosting gravimetric and volumetric performance: Biomass-derived ternary-doped microporous carbon nanosheet electrodes for supercapacitors. Carbon 140:664–672

    CAS  Google Scholar 

  129. Li J, Wang N, Tian J et al (2018) Cross-coupled macro-mesoporous carbon network toward record high energy-power density supercapacitor at 4 V. Adv Funct Mater 28(51):1806153

    Google Scholar 

  130. Hu P, Meng D, Ren G et al (2016) Nitrogen-doped mesoporous carbon thin film for binder-free supercapacitor. Appl Mater Today 5:1–8

    Google Scholar 

  131. Zeng R, Tang X, Huang B (2018) Nitrogen-doped hierarchically porous carbon materials with enhanced performance for supercapacitor. Chemelectrochem 5(3):515–522

    CAS  Google Scholar 

  132. Peng H, Zhou J, Chen Z et al (2019) Integrated carbon nanosheet frameworks inlaid with nickel phosphide nanoparticles by substrate-free chemical blowing and phosphorization for aqueous asymmetric supercapacitor. J Alloys Compd 797:1095–1105

    CAS  Google Scholar 

  133. Sun L, Li N, Zhang S (2019) Nitrogen-containing porous carbon/alpha-MnO2 nanowires composite electrode towards supercapacitor applications. Context Sens Links 789:910–918

    CAS  Google Scholar 

  134. Yang X, Cai C, Zou Y et al (2020) Co3O4-doped two-dimensional carbon nanosheet as an electrode material for high-performance asymmetric supercapacitors. Electrochim Acta 335:135611

    CAS  Google Scholar 

  135. Kim SK, Yoon Y, Ryu JH et al (2019) Recyclable high-performance polymer electrolyte based on modified methyl cellulose–lithium trifluoromethanesulfonate salt composite for sustainable energy systems. Chem Sus Chem 13(2):376–384

    Google Scholar 

  136. Jiao F, Edberg J, Zhao D et al (2018) Nanofibrillated cellulose-based electrolyte and electrode for paper-based supercapacitors. Adv Sustain Syst 2(1):1700121

    Google Scholar 

  137. Wang D, Yu H, Qi D (2019) Supramolecular self-assembly of 3d conductive cellulose nanofiber aerogels for flexible supercapacitors and ultrasensitive sensors. ACS Appl Mater Interfaces 11(27):24435–24446

    CAS  Google Scholar 

  138. Ko J, Kim SK, Yoon Y et al (2018) Eco-friendly cellulose based solid electrolyte with high performance and enhanced low humidity performance by hybridizing with aluminum fumarate MOF. Mater Today Energy 9:11–18

    Google Scholar 

  139. Parveen N, Muhammad H, Jeong IH (2020) Newly design porous/sponge red phosphorus@ graphene and highly conductive Ni2P electrode for asymmetric solid state supercapacitive device with excellent performance. Nano-Micro Lett 12:25

    Google Scholar 

  140. Ji Y, Liang N, Xu J et al (2019) Cellulose and poly(vinyl alcohol) composite gels as separators for quasi-solid-state electric double layer capacitors. Cellulose 26(2):1055–1065

    CAS  Google Scholar 

  141. Chen M, Chen J, Zhou W et al (2019) High-performance flexible and self-healable quasi-solid-state zinc-ion hybrid supercapacitor based on borax-crosslinked polyvinyl alcohol/nanocellulose hydrogel electrolyte. J Mater Chem A 7(46):26524–26532

    CAS  Google Scholar 

  142. Wang H, Wu J, Qiu J (2019) In situ formation of a renewable cellulose hydrogel electrolyte for high-performance flexible all-solid-state asymmetric supercapacitors. Sustain Energy Fuels 3(11):3109–3115

    CAS  Google Scholar 

  143. Li L, Lu F, Wang C (2018) Flexible double-cross-linked cellulose-based hydrogel and aerogel membrane forsupercapacitor separator. J Mater Chem A 6(47):24468–24478

    CAS  Google Scholar 

  144. Wei J, Zhou J, Su S et al (2018) Water-Deactivated polyelectrolyte hydrogel electrolytes for flexible high-voltage supercapacitors. Chemsuschem 11(19):3410–3415

    CAS  Google Scholar 

  145. Rana HH, Park JH, Gund GS et al (2020) Highly conducting, extremely durable, phosphorylated cellulose-based ionogels for renewable flexible supercapacitors. Energy Storage Mater 25:70–75

    Google Scholar 

  146. Guo S, Kang Z, Zhiqiang F et al (2018) High performance liquid crystalline bionanocomposite ionogels prepared by in situ crosslinking of cellulose/halloysite nanotubes/ionic liquid dispersions and its application in supercapacitors. Appl Surf Sci 455:599–607

    CAS  Google Scholar 

  147. Kasturi PR, Ramasamy H, Meyric D (2019) Preparation of starch-based porous carbon electrode and biopolymer electrolyte for all solid-state electric double layer capacitor. J Colloid Interface Sci 554:142–156

    CAS  Google Scholar 

  148. Willfahrt A, Steiner E, Hötzel J et al (2019) Printable acid-modified corn starch as non-toxic, disposable hydrogel-polymer electrolyte in supercapacitors. Appl Phys A 125:474

    CAS  Google Scholar 

  149. Liew C, Ramesh S (2014) Comparing triflate and hexafluorophosphate anions of ionic liquids in polymer electrolytes for supercapacitor applications. Materials 7(5):4019–4033

    CAS  Google Scholar 

  150. Teoh KH, Lim C, Liew C et al (2015) Electric double-layer capacitors with corn starch-based biopolymer electrolytes incorporating silica as filler. Ionics 21(7):2061–2068

    CAS  Google Scholar 

  151. Railanmaa A, Lehtimäki S, Lupo D (2017) Comparison of starch and gelatin hydrogels for non-toxic supercapacitor electrolytes. Appl Phys A 123:459

    Google Scholar 

  152. Chauhan JK, Kumar M, Yadav M et al (2017) Effect of NaClO4 concentration on electrolytic behaviour of corn starch film for supercapacitor application. Ionics 23(10):2943–2949

    CAS  Google Scholar 

  153. Tuhin MO, Rahman N, Haque M et al (2012) Modification of mechanical and thermal property of chitosan-starch blend films. Radiat Phys Chem 81:1659–1688

    CAS  Google Scholar 

  154. Yusof YM, Shukur MF, Hamsan MH et al (2019) Plasticized solid polymer electrolyte based on natural polymer blend incorporated with lithium perchlorate for electrical double-layer capacitor fabrication. Ionics 25(11):5473–5484

    CAS  Google Scholar 

  155. Sudhakar YN, Selvakumar M (2012) Lithium perchlorate doped plasticized chitosan and starch blend as biodegradable polymer electrolyte for supercapacitors. Electrochim Acta 78:398–405

    CAS  Google Scholar 

  156. Sudhakar YN, Selvakumar M (2013) Ionic conductivity studies and dielectric studies of Poly(styrene sulphonic acid)/starch blend polymer electrolyte containing LiClO4. J Appl Electrochem 43(1):21–29

    CAS  Google Scholar 

  157. Xie H, Zhang S, Li S (2006) Chitin and chitosan dissolved in ionic liquids as reversible sorbents of CO2. Green Chem 8(7):630

    CAS  Google Scholar 

  158. Qi H, Chang C, Zhang L (2008) Effects of temperature and molecular weight on dissolution of cellulose in NaOH/urea aqueous solution. Cellulose 15(6):779–787

    CAS  Google Scholar 

  159. Tamura H, Nagahama H, Tokura S (2006) Preparation of chitin hydrogel under mild conditions. Cellulose 13(4):357–364

    CAS  Google Scholar 

  160. Takegawa A, Murakami M, Kaneko Y et al (2010) Preparation of chitin/cellulose composite gels and films with ionic liquids. Carbohyd Polym 79(1):85–90

    CAS  Google Scholar 

  161. Barber PS, Griggs CS, Bonner JR et al (2013) Electrospinning of chitin nanofibers directly from an ionic liquid extract of shrimp shells. Green Chem 15(3):601–607

    CAS  Google Scholar 

  162. Keskinen J, Railanmaa A, Lupo D (2018) Monolithically prepared aqueous supercapacitors. J Energy Storage 16:243–249

    Google Scholar 

  163. Pérez-Madrigal MM, Estrany F, Armelin E et al (2016) Towards sustainable solid-state supercapacitors: electroactive conducting polymers combined with biohydrogels. J Mater Chem A 4(5):1792–1805

    Google Scholar 

  164. Wei Y, Wang M, Xu N et al (2018) Alkaline exchange polymer membrane electrolyte for high performance of all-solid-state electrochemical devices. ACS Appl Mater Interfaces 10(35):29593–29598

    CAS  Google Scholar 

  165. Zhao J, Chen Y, Yao Y et al (2018) Preparation of the polyelectrolyte complex hydrogel of biopolymers via a semi-dissolution acidification sol-gel transition method and its application in solid-state supercapacitors. J Power Source 378:603–609

    CAS  Google Scholar 

  166. Cao L, Yang M, Wu D et al (2017) Biopolymer-chitosan based supramolecular hydrogels as solid state electrolytes for electrochemical energy storage. Chem Commun 53(10):1615–1618

    CAS  Google Scholar 

  167. Ojha M, Le Houx J, Mukkabla R et al (2019) Lithium titanate/pyrenecarboxylic acid decorated carbon nanotubes hybrid-Alginate gel supercapacitor. Electrochim Acta 309:253–263

    CAS  Google Scholar 

  168. Zhao W, Wei L, Fu Q et al (2019) High-performance, flexible, solid-state micro-supercapacitors based on printed asymmetric interdigital electrodes and bio-hydrogel for on-chip electronics. J Power Source 422:73–83

    CAS  Google Scholar 

  169. Wei L, Zeng J, Guo X (2017) Bio-inspired high-performance solid-state supercapacitors with electrolyte, separator, binder and electrodes entirely from kelp. J Mater Chem A 5(48):25282–25292

    Google Scholar 

  170. Zeng J, Dong L, Sha W et al (2020) Highly stretchable, compressible and arbitrarily deformable all-hydrogel soft supercapacitors. Chem Eng J 383:123098

    CAS  Google Scholar 

  171. Tao F, Qin L, Wang Z et al (2017) Self-Healable and Cold-Resistant supercapacitor based on a multifunctional hydrogel electrolyte. ACS Appl Mater Interfaces 9(18):15541–15548

    CAS  Google Scholar 

  172. Fu X, Jewel Y, Wang Y et al (2016) Decoupled ion transport in a protein-based solid ion conductor. J Phys Chem Lett 7:4304–4310

    CAS  Google Scholar 

  173. Huo P, Ni S, Hou P et al (2019) A crosslinked soybean protein isolate gel polymer electrolyte based on neutral aqueous electrolyte for a high-energy-density supercapacitor. Polymers 11(5):863

    CAS  Google Scholar 

Download references

Funding

No financial support.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through the contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Feijun Wang or Ziqiang Shao.

Ethics declarations

Conflicts of interest

No potential conflict of interest was reported by the authors.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, S., Wang, F. & Shao, Z. Biomass applied in supercapacitor energy storage devices. J Mater Sci 56, 1943–1979 (2021). https://doi.org/10.1007/s10853-020-05356-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05356-1

Navigation