Skip to main content
Log in

Preparation of sandwich-like CNs@rGO nanocomposites with enhanced microwave absorption properties

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Herein, functionalized carbon nanospheres (CNs) are encapsulated within reduced graphene oxide (rGO) layers as a high-performance microwave-absorbing material. The obtained sandwich-like CNs@rGO nanocomposite is characterized by a well-matched characteristic impedance and multiple dielectric relaxation processes, resulting in a strong reflection loss (–33.09 dB at 14.01 GHz) and broad effective bandwidth of 12.2–17.6 GHz (5.4 GHz) with a low thickness of 2.0 mm, which is superior to many reported carbon absorbers and even some magnetic absorbers. This remarkable microwave absorption property is ascribed to the sandwich structure, indicating that the as-prepared sandwich-like CNs@rGO nanocomposites are potential candidates for lightweight microwave absorption materials.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Wang Y, Gao X, Lin CH, Shi LY, Li XH, Wu GL (2019) Metal organic frameworks-derived Fe-Co nanoporous carbon/graphene composite as a high-performance electromagnetic wave absorber. J Alloy Compd 785:765–773. https://doi.org/10.1016/j.jallcom.2019.01.271

    Article  CAS  Google Scholar 

  2. Shi YN, Gao XH, Qiu J (2019) Synthesis and strengthened microwave absorption properties of three-dimensional porous Fe3O4/graphene composite foam. Ceram Int 45:3126–3132. https://doi.org/10.1016/j.ceramint.2018.10.212

    Article  CAS  Google Scholar 

  3. Sun QL, Sun L, Cai YY, Ye W, Xu SJ, Ji T, Yuan GJ (2019) Fe3O4-intercalated reduced graphene oxide nanocomposites with enhanced microwave absorption properties. Ceram Int 45:18298–18305. https://doi.org/10.1016/j.ceramint.2019.06.042

    Article  CAS  Google Scholar 

  4. Jia ZR, Gao ZG, Kou KC, Feng AL, Zhang CH, Xu BH, Wu GL (2020) Facile synthesis of hierarchical A-site cation deficiency perovskite LaxFeO3-y/RGO for high efficiency microwave absorption. Comput Commun 20:100344. https://doi.org/10.1016/j.coco.2020.04.010

    Article  Google Scholar 

  5. Randjelović MS, Momčilović MZ, Enke D, Mirčeski V (2019) Electrochemistry of hydrogen peroxide reduction reaction on carbon paste electrodes modified by Ag- and Pt-supported carbon microspheres. J Solid State Electrochem 23:1257–1267. https://doi.org/10.1007/s10008-019-04226-4

    Article  CAS  Google Scholar 

  6. Yan TN, Xu JL, Chu ZY, Liu EH, Yang L, Wang CH (2017) Hydrothermal synthesis and electrochemical properties of N-doped activated carbon microspheres. Int J Electrochem Sci 12:6118–6128. https://doi.org/10.20964/2017.07.20

    Article  CAS  Google Scholar 

  7. Cui M, Ren S, Zhao H, Xue Q, Wang L (2018) Polydopamine coated graphene oxide for anticorrosive reinforcement of water-borne epoxy coating. Chem Eng J 335:255–266. https://doi.org/10.1016/j.cej.2017.10.172

    Article  CAS  Google Scholar 

  8. Rathnayake RMNM, Wijayasinghe HWMAC, Pitawala HMTGA, Yoshimura M, Huang HH (2017) Synthesis of graphene oxide and reduced graphene oxide by needle platy natural vein graphite. Appl Surf Sci 393:309–315. https://doi.org/10.1016/j.apsusc.2016.10.008

    Article  CAS  Google Scholar 

  9. Lv HL, Ji GB, Liu W, Zhang HQ, Du YW (2015) Achieving hierarchical hollow Carbon@Fe@Fe3O4 nanospheres with superior microwave absorption properties and lightweight features. J Mater Chem C 3:10232–10241. https://doi.org/10.1039/C5TC02512E

    Article  CAS  Google Scholar 

  10. Kuang B, Song W, Ning M, Li J, Zhao Z, Guo D, Cao M, Jin H (2018) Chemical reduction dependent dielectric properties and dielectric loss mechanism of reduced graphene oxide. Carbon 127:209–217. https://doi.org/10.1016/j.carbon.2017.10.092

    Article  CAS  Google Scholar 

  11. Li YZ, Zhang YF, Zhang HR, Xing TL, Chen GQ (2019) A facile approach to prepare a flexible sandwich-structured supercapacitor with rGO-coated cotton fabric as electrodes. RSC Adv 9(8):4180–4189. https://doi.org/10.1039/c9ra00171a

    Article  CAS  Google Scholar 

  12. Fu XY, Liu L, Yu YF, Lv HJ, Zhang Y, Hou SL, Chen AB (2019) Hollow carbon spheres/hollow carbon nanorods composites as electrode materials for supercapacitor. J Taiwan Inst Chem E 101:244–250. https://doi.org/10.1016/j.jtice.2019.04.043

    Article  CAS  Google Scholar 

  13. Wang X, Wang XJ, Zhao JF, Song JK, Su CL, Wang ZC (2018) Surface modified TiO2 floating photocatalyst with PDDA for efficient adsorption and photocatalytic inactivation of microcystis aeruginosa. Water Res 131:320–333. https://doi.org/10.1016/j.watres.2017.12.062

    Article  CAS  Google Scholar 

  14. Li ZW, Mi HY, Liu L, Bai ZY, Zhang JP, Zhang Q, Qiu JS (2018) Nano-sized ZIF-8 anchored polyelectrolyte-decorated silica for nitrogen-rich hollow carbon shell frameworks toward alkaline and neutral supercapacitors. Carbon 136:176–186. https://doi.org/10.1016/j.carbon.2018.04.075

    Article  CAS  Google Scholar 

  15. Du J, Liu L, Yu YF, Zhang Y, Chen AB (2019) N-doping carbon sheet and core-shell mesoporous carbon sphere composite for high-performance supercapacitor. J Ind Eng Chem 76:450–456. https://doi.org/10.1016/j.jiec.2019.04.012

    Article  CAS  Google Scholar 

  16. Sheng HZ, Shao L, Chen JJ, Bao WJ, Wang FB, Xia XH (2011) Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5(6):4350–4358. https://doi.org/10.1021/nn103584t

    Article  CAS  Google Scholar 

  17. Xiang YF, Banks MK, Wu RX, Xu WJ, Chen S (2018) Synthesis of thermo-sensitive PDDA-co-PNIPAM/graphene hybrid via electrostatic interactions and its thermal modulated phase transition. Mater Chem Phys 220:58–65. https://doi.org/10.1016/j.matchemphys.2018.08.070

    Article  CAS  Google Scholar 

  18. Yang DQ, Rochette JF, Sacher E (2005) Spectroscopic evidence for π–π interaction between poly (diallyl dimethylammonium) chloride and multiwalled carbon nanotubes. J Phys Chem B 109:4481–4484. https://doi.org/10.1021/jp044511+

    Article  CAS  Google Scholar 

  19. Mohamadi M, Kowsari E, Asl VH, Yousefzadeh M, Chinnappan A, Ramakrishna S (2020) Highly-efficient microwave absorptivity in reduced graphene oxide modified with PTA@ imidazolium based dicationic ionic liquid and fluorine atom. Compos Sci Technol 188:107960. https://doi.org/10.1016/j.compscitech.2019.107960

    Article  CAS  Google Scholar 

  20. Wang G, Zhang M, Chen D, Chen D, Guo QL, Feng XF, Niu TC, Liu XS et al (2018) Seamless lateral graphene pn junctions formed by selective in situ doping for high-performance photodetectors. Nat Commun 9:5168. https://doi.org/10.1038/s41467-018-07555-6

    Article  CAS  Google Scholar 

  21. Zhang YL, Wang XX, Cao MS (2018) Confinedly implanted NiFe2O4-rGO: cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption. Nano Res 11:1426–1436. https://doi.org/10.1007/s12274-017-1758-1

    Article  CAS  Google Scholar 

  22. Yang HB, Ye T, Lin Y, Liu M (2015) Excellent microwave absorption property of ternary composite: Polyaniline-BaFe12O19–CoFe2O4 powders. J Alloy Compd 653:135–139. https://doi.org/10.1016/j.jallcom.2015.08.272

    Article  CAS  Google Scholar 

  23. Tian CH, Du YC, Xu HY, Xue JL, Chu WL, Qiang R, Han XJ, Xu P (2017) Differential shrinkage induced formation of yolk-shell carbon microspheres toward enhanced microwave absorption. Appl Phys Lett 111(13):133103. https://doi.org/10.1063/1.4989750

    Article  CAS  Google Scholar 

  24. Liu W, Tan SJ, Yang ZH, Ji GB (2018) Hollow graphite spheres embedded in porous amorphous carbon matrices as lightweight and low-frequency microwave absorbing material through modulating dielectric loss. Carbon 138:143–153. https://doi.org/10.1016/j.carbon.2018.06.009

    Article  CAS  Google Scholar 

  25. Quan B, Liang X, Ji G, Lv J, Dai S, Xu G, Du Y (2017) Laminated graphene oxide-supported high-efficiency microwave absorber fabricated by an in situ growth approach. Carbon 129:310–320. https://doi.org/10.1016/j.carbon.2017.12.026

    Article  CAS  Google Scholar 

  26. Li DP, Sun YC, Wang X, Wu S, Han SC, Yang Y (2017) Development of a hollow carbon sphere absorber displaying the multiple-reflection effect to attenuate electromagnetic waves. RSC Adv 7(60):37983–37989. https://doi.org/10.1039/c7ra04547f

    Article  CAS  Google Scholar 

  27. Shu RW, Li WJ, Wu Y, Zhang JB, Zhang GY (2019) Nitrogen-doped Co-C/MWCNTs nanocomposites derived from bimetallic metal-organic frameworks for electromagnetic wave absorption in the X-band. Chem Eng J 362:513–524. https://doi.org/10.1016/j.cej.2019.01.090

    Article  CAS  Google Scholar 

  28. Wang Y, Wu XM, Zhang WZ, Luo CY, Li JH, Wang YJ (2018) Fabrication of flower-like Ni0.5Co0.5(OH)2@PANI and its enhanced microwave absorption performances. Mater Res Bull 98:59–63. https://doi.org/10.1016/j.materresbull.2017.10.004

    Article  CAS  Google Scholar 

  29. Wu GL, Zhang HX, Luo XX, Yang LJ, Lv HL (2019) Investigation and optimization of Fe/ZnFe2O4 as a wide-band electromagnetic absorber. J Colloid Interface Sci 536:548–555. https://doi.org/10.1016/j.jcis.2018.10.084

    Article  CAS  Google Scholar 

  30. Dong S, Zhang XH, Hu PT, Zhang WZ, Han JC, Hu P (2019) Biomass-derived carbon and polypyrrole addition on SiC whiskers for enhancement of electromagnetic wave absorption. Chem Eng J 359:882–893. https://doi.org/10.1016/j.cej.2018.11.101

    Article  CAS  Google Scholar 

  31. Wang Y, Du YC, Qiang R, Tian CH, Xu P, Han XJ (2016) Interfacially engineered sandwich-like rGO/carbon microspheres/rGO composite as an efficient and durable microwave absorber. Adv Mater Interfaces 3(7):1500684. https://doi.org/10.1002/admi.201500684

    Article  CAS  Google Scholar 

  32. Wang L, Huang Y, Huang HJ (2014) Synthesis and high-performance microwave absorption of graphene foam/polyaniline nanorods. Mater Lett 124:89–92. https://doi.org/10.1016/j.matlet.2015.11.116

    Article  CAS  Google Scholar 

  33. Li G, Xie TS, Yang SL, Jin JH, Jiang JM (2012) Microwave absorption enhancement of porous carbon fibers compared with carbon nanofibers. J Phys Chem C 116(16):9196–9201. https://doi.org/10.1021/jp300050u

    Article  CAS  Google Scholar 

  34. Zhang HX, Wang BB, Feng AL, Zhang N, Jia ZR, Huang ZY, Liu XH, Wu GL (2019) Mesoporous carbon hollow microspheres with tunable pore size and shell thickness as efficient electromagnetic wave absorbers. Compos Part B 167:690–699. https://doi.org/10.1016/j.compositesb.2019.03.055

    Article  CAS  Google Scholar 

  35. Feng AL, Jia ZR, Zhao Y, Lv HL (2018) Development of Fe/ Fe3O4@C composite with excellent electromagnetic absorption performance. J Alloy Compd 745:547–554. https://doi.org/10.1016/j.jallcom.2018.02.255

    Article  CAS  Google Scholar 

  36. Wu JM, Ye ZM, Liu WX, Liu ZF, Chen J (2017) The effect of GO loading on electromagnetic wave absorption properties of Fe3O4/reduced graphene oxide hybrids. Ceram Int 43:13146–13153. https://doi.org/10.1016/j.ceramint.2017.07.007

    Article  CAS  Google Scholar 

  37. Qiu S, Lyu HL, Liu JR, Liu YZ, Wu NN, Liu W (2016) Facile synthesis of porous nickel/carbon composite microspheres with enhanced electromagnetic wave absorption by magnetic and dielectric losses. ACS Appl Mater Interfaces 82:0258–20266. https://doi.org/10.1021/acsami.6b03159

    Article  CAS  Google Scholar 

  38. Xia L, Zhang XY, Yang YN, Zhang J, Zhang B, Wang HT (2018) Enhanced electromagnetic wave absorption properties of laminated SiCNW-Cf/lithium–aluminum–silicate (LAS) composites. J Alloy Compd 748:154–162. https://doi.org/10.1016/j.jallcom.2018.03.044

    Article  CAS  Google Scholar 

  39. Shu RW, Zhang GY, Zhang JB, Wang X, Wang M, Gan Y, Shi JJ, He J (2018) Fabrication of reduced graphene oxide/multi-walled carbon nanotubes/zinc ferrite hybrid composites as high-performance microwave absorbers. J Alloy Compd 736:1–11. https://doi.org/10.1016/j.jallcom.2017.11.084

    Article  CAS  Google Scholar 

  40. Chen XL, Wang W, Shi T, Wu GL, Lu Y (2020) One pot green synthesis and EM wave absorption performance of MoS2@nitrogen doped carbon hybrid decorated with ultrasmall cobalt ferrite nanoparticles. Carbon 163:202–212. https://doi.org/10.1016/j.carbon.2020.03.005

    Article  CAS  Google Scholar 

  41. Liu PJ, VMH N, Yao ZJ, Zhou JT, Lei YM, Yang ZH, Kong LB, (2017) Microwave absorption properties of double-layer absorbers based on Co0.2Ni0.4Zn0.4 Fe2O4 ferrite and reduced graphene oxide composites. J Alloy Compd 701:841–849. https://doi.org/10.1007/s40195-017-0612-5

    Article  CAS  Google Scholar 

  42. Liu PB, Zhang YQ, Yan J, Huang Y, Xia L, Guang ZX (2019) Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption. Chem Eng J 368:285–298. https://doi.org/10.1016/j.cej.2019.02.193

    Article  CAS  Google Scholar 

  43. Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics I alternating current characteristics. J Chem Phys 9(4):341–351. https://doi.org/10.1063/1.1750906

    Article  CAS  Google Scholar 

  44. Li ZJ, Lin H, Ding SQ, Ling HL, Wang T, Miao ZQ, Zhang M, Meng A et al (2020) Synthesis and enhanced electromagnetic wave absorption performances of Fe3O4@C decorated walnut shell-derived porous carbon. Carbon 167:148–159. https://doi.org/10.1016/j.carbon.2020.05.070

    Article  CAS  Google Scholar 

  45. Huang Y, Yan J, Zhou SH, Yang JY, Liu PB (2018) Preparation and electromagnetic wave absorption properties of CoNi@SiO2 microspheres decorated graphene–polyaniline nanosheets. J Mater Sci Mater Electron 29:70–79. https://doi.org/10.1007/s10854-017-7889-z

    Article  CAS  Google Scholar 

  46. Liu QH, Cao Q, Bi H, Liang CY, Yuan KP, She W, Yang YJ, Che RC (2016) CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv Mater 28(3):486–490. https://doi.org/10.1002/adma.201503149

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions (Su Caijiao [2018] No. 192) and the Graduate Innovation Project of Nantong University College of Textiles and Clothing (FZ201909).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript. QS and YC contributed equally to this work.

Corresponding author

Correspondence to Wei Ye.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Handling Editor: Naiqin Zhao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Q., Cai, Y., Sun, L. et al. Preparation of sandwich-like CNs@rGO nanocomposites with enhanced microwave absorption properties. J Mater Sci 56, 1492–1503 (2021). https://doi.org/10.1007/s10853-020-05350-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05350-7

Navigation