Skip to main content
Log in

Adding value to aluminosilicate solid wastes to produce adsorbents, catalysts and filtration membranes for water and wastewater treatment

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Geopolymers are a class of inorganic polymers that have attracted attention in recent years, especially in the construction sector, due to their promising mechanical properties, as well as simple and low-cost fabrication. These materials also stand out for being more environmentally friendly, not only because of their lower CO2 emissions during production, but also because industrial by-products can be incorporated in their synthesis. Recent studies have investigated porous geopolymers, allowing expansion of their potential use to several other applications. Meanwhile, application of GPs to efficient water and wastewater treatments, such as nanofiltration and advanced oxidation processes, remains a challenge, especially due to high operational costs. Thus, this paper provides a comprehensive review of the current state of knowledge of geopolymers produced from aluminosilicate wastes, showing the main promising advances in their applications in three technological fields: (1) adsorption, (2) membrane filtration and (3) catalysis (as both catalyst or catalyst support).

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Reprinted with permission from [7]. Copyright 2020 Elsevier

Figure 2

Reprinted with permission from Rossato et al. [34]. Copyright 2020 Elsevier

Figure 3

Reprinted with permission from Khanzada et al. [97]. Copyright 2020 Elsevier

Figure 4

Reprinted with permission from Xu et al. [127]. Copyright 2019 Elsevier

Figure 5

Reprinted with permission from Chen et al. [74]. Copyright 2019 American Chemical Society

Figure 6

Reprinted with permission from Huang et al. [178]. Copyright 2020 Elsevier

Figure 7

Reprinted with permission from Zhang et al. [171]. Copyright 2018 Multidisciplinary Digital Publishing Institute

Similar content being viewed by others

Abbreviations

·OH:

Hydroxyl radicals

AOP:

Advanced oxidation processes

BA:

Bottom ash

BC/GM:

Biochar/geopolymer

BFS:

Blast furnace slag

BT:

Bauxite

CB:

Carbon black

CC:

Calcium carbonate

CGP:

Catalytic geopolymer

CTAB:

Cetyl-trimethylammonium bromide

EPR:

Electron paramagnetic resonance

FA:

Fly ashes

FS:

Fumed silica

GP:

Geopolymer

GPA:

Geopolymeric adsorbents

GPM:

Geopolymer membrane

HT:

Halloysite

HZ:

Hydroxysodalite zeolite

KT:

Kaolinite

LT:

Laterite

MGP:

Magnetic geopolymer

MK:

Metakaolin

MS:

Magnesium slag

PT:

Perlite

POFA:

Palm oil fuel ash

SF:

Silica fume

QZ:

Quartz

SMS:

Silicomanganese slag

SS:

Steel slag

References

  1. Davidovits J (1972) Procédé de fabrication de panneaux agglomérés et panneaux resultant de l’application de ce procédé

  2. Rasaki SA, Bingxue Z, Guarecuco R et al (2019) Geopolymer for use in heavy metals adsorption, and advanced oxidative processes: a critical review. J Clean Prod 213:42–58. https://doi.org/10.1016/j.jclepro.2018.12.145

    Article  CAS  Google Scholar 

  3. Duxson P, Fernández-Jiménez A, Provis JL et al (2007) Geopolymer technology: the current state of the art. J Mater Sci 42:2917–2933. https://doi.org/10.1007/s10853-006-0637-z

    Article  CAS  Google Scholar 

  4. Ahmaruzzaman M (2010) A review on the utilization of fly ash. Prog Energy Combust Sci 36:327–363. https://doi.org/10.1016/j.pecs.2009.11.003

    Article  CAS  Google Scholar 

  5. El-Habaak G, Askalany M, Abdel-Hakeem M (2018) Building up and characterization of calcined marl-based geopolymeric cement. Infrastructures. https://doi.org/10.3390/infrastructures3030022

    Article  Google Scholar 

  6. Tan J, Cai J, Li X et al (2020) Development of eco-friendly geopolymers with ground mixed recycled aggregates and slag. J Clean Prod 256:120369. https://doi.org/10.1016/j.jclepro.2020.120369

    Article  CAS  Google Scholar 

  7. Zhang P, Wang K, Li Q et al (2020) Fabrication and engineering properties of concretes based on geopolymers/alkali-activated binders—a review. J Clean Prod 258:120896. https://doi.org/10.1016/j.jclepro.2020.120896

    Article  CAS  Google Scholar 

  8. Davidovits J (2002) Environmentally driven geopolymer cement applications. In: Geopolymer 2002 conference, pp 1–9

  9. Mehta A, Siddique R (2016) An overview of geopolymers derived from industrial by-products. Constr Build Mater 127:183–198. https://doi.org/10.1016/j.conbuildmat.2016.09.136

    Article  CAS  Google Scholar 

  10. Si R, Dai Q, Guo S, Wang J (2020) Mechanical property, nanopore structure and drying shrinkage of metakaolin-based geopolymer with waste glass powder. J Clean Prod 242:118502. https://doi.org/10.1016/j.jclepro.2019.118502

    Article  CAS  Google Scholar 

  11. Lynch JLV, Baykara H, Cornejo M et al (2018) Preparation, characterization, and determination of mechanical and thermal stability of natural zeolite-based foamed geopolymers. Constr Build Mater 172:448–456. https://doi.org/10.1016/j.conbuildmat.2018.03.253

    Article  CAS  Google Scholar 

  12. Lahoti M, Tan KH, Yang EH (2019) A critical review of geopolymer properties for structural fire-resistance applications. Constr Build Mater 221:514–526. https://doi.org/10.1016/j.conbuildmat.2019.06.076

    Article  CAS  Google Scholar 

  13. Tchadjie LN, Ekolu SO (2018) Enhancing the reactivity of aluminosilicate materials toward geopolymer synthesis. J Mater Sci 53:4709–4733. https://doi.org/10.1007/s10853-017-1907-7

    Article  CAS  Google Scholar 

  14. Assi LN, Carter K, Deaver E, Ziehl P (2020) Review of availability of source materials for geopolymer/sustainable concrete. J Clean Prod 263:121477. https://doi.org/10.1016/j.jclepro.2020.121477

    Article  CAS  Google Scholar 

  15. Zhang YJ, Han ZC, He PY, Chen H (2020) Geopolymer-based catalysts for cost-effective environmental governance: a review based on source control and end-of-pipe treatment. J Clean Prod. https://doi.org/10.1016/j.jclepro.2020.121556

    Article  Google Scholar 

  16. Singh J, Singh SP (2019) Geopolymerization of solid waste of non-ferrous metallurgy—a review. J Environ Manag 251:109571. https://doi.org/10.1016/j.jenvman.2019.109571

    Article  CAS  Google Scholar 

  17. Mohajerani A, Suter D, Jeffrey T et al (2019) Recycling waste materials in geopolymer concrete. Clean Technol Environ Policy 21:493–515. https://doi.org/10.1007/s10098-018-01660-2

    Article  CAS  Google Scholar 

  18. Gomes SDC, Zhou JL, Li W, Long G (2019) Progress in manufacture and properties of construction materials incorporating water treatment sludge: a review. Resour Conserv Recycl 145:148–159. https://doi.org/10.1016/j.resconrec.2019.02.032

    Article  Google Scholar 

  19. Ji Z, Pei Y (2019) Bibliographic and visualized analysis of geopolymer research and its application in heavy metal immobilization: a review. J Environ Manag 231:256–267. https://doi.org/10.1016/j.jenvman.2018.10.041

    Article  CAS  Google Scholar 

  20. Singh NB, Nagpal G, Agrawal S (2018) Water purification by using adsorbents: a review. Environ Technol Innov 11:187–240. https://doi.org/10.1016/j.eti.2018.05.006

    Article  Google Scholar 

  21. Siyal AA, Shamsuddin MR, Khan MI et al (2018) A review on geopolymers as emerging materials for the adsorption of heavy metals and dyes. J Environ Manag 224:327–339. https://doi.org/10.1016/j.jenvman.2018.07.046

    Article  CAS  Google Scholar 

  22. Fletcher RA, MacKenzie KJD, Nicholson CL, Shimada S (2005) The composition range of aluminosilicate geopolymers. J Eur Ceram Soc 25:1471–1477. https://doi.org/10.1016/j.jeurceramsoc.2004.06.001

    Article  CAS  Google Scholar 

  23. Gollakota ARK, Volli V, Shu C (2019) Progressive utilisation prospects of coal fl y ash: a review. Sci Total Environ 672:951–989. https://doi.org/10.1016/j.scitotenv.2019.03.337

    Article  CAS  Google Scholar 

  24. Luukkonen T, Heponiemi A, Runtti H et al (2019) Application of alkali-activated materials for water and wastewater treatment: a review. Rev Environ Sci Biotechnol 18:271–297. https://doi.org/10.1007/s11157-019-09494-0

    Article  CAS  Google Scholar 

  25. Zhuang XY, Chen L, Komarneni S et al (2016) Fly ash-based geopolymer: clean production, properties and applications. J Clean Prod 125:253–267. https://doi.org/10.1016/j.jclepro.2016.03.019

    Article  CAS  Google Scholar 

  26. Ferone C, Colangelo F, Roviello G et al (2013) Application-oriented chemical optimization of a metakaolin based geopolymer. Materials (Basel) 6:1920–1939. https://doi.org/10.3390/ma6051920

    Article  CAS  Google Scholar 

  27. Nur QA, Sari NU, Harianti S (2017) Development of geopolymers composite based on metakaolin-nano ZnO for antibacterial application. Mater Sci Eng. https://doi.org/10.1088/1742-6596/755/1/011001

    Article  Google Scholar 

  28. De Rossi A, Simão L, Ribeiro MJ et al (2019) In-situ synthesis of zeolites by geopolymerization of biomass fly ash and metakaolin. Mater Lett 236:644–648. https://doi.org/10.1016/j.matlet.2018.11.016

    Article  CAS  Google Scholar 

  29. Jindal BB (2019) Investigations on the properties of geopolymer mortar and concrete with mineral admixtures: a review. Constr Build Mater 227:116644. https://doi.org/10.1016/j.conbuildmat.2019.08.025

    Article  CAS  Google Scholar 

  30. Mushtaq F, Zahid M, Bhatti IA et al (2019) Possible applications of coal fly ash in wastewater treatment. J Environ Manag 240:27–46. https://doi.org/10.1016/j.jenvman.2019.03.054

    Article  CAS  Google Scholar 

  31. Haddad RH, Lababneh ZK (2020) Geopolymer composites using natural pozzolan and oil-shale ash base materials: a parametric study. Constr Build Mater 240:117899. https://doi.org/10.1016/j.conbuildmat.2019.117899

    Article  CAS  Google Scholar 

  32. Novais RM, Ascensão G, Tobaldi DM et al (2018) Biomass fly ash geopolymer monoliths for effective methylene blue removal from wastewaters. J Clean Prod 171:783–794. https://doi.org/10.1016/j.jclepro.2017.10.078

    Article  CAS  Google Scholar 

  33. Nasir M, Johari MAM, Yusuf MO et al (2019) Synthesis of alkali-activated binary blended silico-manganese fume and ground blast furnace slag mortar. J Adv Concr Technol 17:728–735. https://doi.org/10.3151/jact.17.728

    Article  CAS  Google Scholar 

  34. Rossatto DL, Netto MS, Jahn SL et al (2020) Highly efficient adsorption performance of a novel magnetic geopolymer/Fe3O4 composite towards removal of aqueous acid green 16 dye. J Environ Chem Eng 8:103804. https://doi.org/10.1016/j.jece.2020.103804

    Article  CAS  Google Scholar 

  35. Hu Y, Liang S, Yang J et al (2019) Role of Fe species in geopolymer synthesized from alkali-thermal pretreated Fe-rich Bayer red mud. Constr Build Mater 200:398–407. https://doi.org/10.1016/j.conbuildmat.2018.12.122

    Article  CAS  Google Scholar 

  36. Rangan BV (2014) Geopolymer concrete for environmental protection. Indian Concr J 88:41–59

    Google Scholar 

  37. Singh P, Sharma K, Hasija V et al (2019) Systematic review on applicability of magnetic iron oxides–integrated photocatalysts for degradation of organic pollutants in water. Mater Today Chem 14:100186. https://doi.org/10.1016/j.mtchem.2019.08.005

    Article  CAS  Google Scholar 

  38. Brillas E, Garcia-Segura S (2020) Benchmarking recent advances and innovative technology approaches of Fenton, photo-Fenton, electro-Fenton, and related processes: a review on the relevance of phenol as model molecule. Sep Purif Technol 237:116337. https://doi.org/10.1016/j.seppur.2019.116337

    Article  CAS  Google Scholar 

  39. Wang J, Bai Z (2017) Fe-based catalysts for heterogeneous catalytic ozonation of emerging contaminants in water and wastewater. Chem Eng J 312:79–98. https://doi.org/10.1016/j.cej.2016.11.118

    Article  CAS  Google Scholar 

  40. Das B, Mohanty K (2019) A review on advances in sustainable energy production through various catalytic processes by using catalysts derived from waste red mud. Renew Energy 143:1791–1811. https://doi.org/10.1016/j.renene.2019.05.114

    Article  CAS  Google Scholar 

  41. Van Jaarsveld JGS, Van Deventer JSJ (1999) Effect of the alkali metal activator on the properties of fly ash-based geopolymers. Ind Eng Chem Res 38:3932–3941. https://doi.org/10.1021/ie980804b

    Article  CAS  Google Scholar 

  42. Ken PW, Ramli M, Cheah CB (2015) An overview on the influence of various factors on the properties of geopolymer concrete derived from industrial by-products. Constr Build Mater 77:370–395. https://doi.org/10.1016/j.conbuildmat.2014.12.065

    Article  Google Scholar 

  43. Xin L, Xu JY, Li W, Bai E (2014) Effect of alkali-activator types on the dynamic compressive deformation behavior of geopolymer concrete. Mater Lett 124:310–312. https://doi.org/10.1016/j.matlet.2014.03.102

    Article  CAS  Google Scholar 

  44. Ryu GS, Lee YB, Koh KT, Chung YS (2013) The mechanical properties of fly ash-based geopolymer concrete with alkaline activators. Constr Build Mater 47:409–418. https://doi.org/10.1016/j.conbuildmat.2013.05.069

    Article  Google Scholar 

  45. Panagiotopoulou C, Kontori E, Perraki T, Kakali G (2007) Dissolution of aluminosilicate minerals and by-products in alkaline media. J Mater Sci 42:2967–2973. https://doi.org/10.1007/s10853-006-0531-8

    Article  CAS  Google Scholar 

  46. Chindaprasirt P, Jaturapitakkul C, Chalee W, Rattanasak U (2009) Comparative study on the characteristics of fly ash and bottom ash geopolymers. Waste Manag 29:539–543. https://doi.org/10.1016/j.wasman.2008.06.023

    Article  CAS  Google Scholar 

  47. Davidovits J, Davidovics M, Davidovits N (1994) Process for obtaining a geopolymericalumno-slicate and products thus obtained. 9

  48. Zhang HY, Kodur V, Wu B et al (2018) Effect of temperature on bond characteristics of geopolymer concrete. Constr Build Mater 163:277–285. https://doi.org/10.1016/j.conbuildmat.2017.12.043

    Article  CAS  Google Scholar 

  49. Adak D, Sarkar M, Maiti M et al (2015) Anti-microbial efficiency of nano silver-silica modified geopolymer mortar for eco-friendly green construction technology. RSC Adv 5:64037–64045. https://doi.org/10.1039/c5ra12776a

    Article  CAS  Google Scholar 

  50. Aliabdo AA, Abd Elmoaty AEM, Salem HA (2016) Effect of cement addition, solution resting time and curing characteristics on fly ash based geopolymer concrete performance. Constr Build Mater 123:581–593. https://doi.org/10.1016/j.conbuildmat.2016.07.043

    Article  CAS  Google Scholar 

  51. Nurruddin MF, Haruna S, Mohammed BSM, Sha’aban IG (2018) Methods of curing geopolymer concrete: a review. Int J Adv Appl Sci 5:31–36. https://doi.org/10.21833/ijaas.2018.01.005

    Article  Google Scholar 

  52. Mo BH, Zhu H, Cui XM et al (2014) Effect of curing temperature on geopolymerization of metakaolin-based geopolymers. Appl Clay Sci 99:144–148. https://doi.org/10.1016/j.clay.2014.06.024

    Article  CAS  Google Scholar 

  53. Giasuddin HM, Sanjayan JG, Ranjith PG (2013) Strength of geopolymer cured in saline water in ambient conditions. Fuel 107:34–39. https://doi.org/10.1016/j.fuel.2013.01.035

    Article  CAS  Google Scholar 

  54. Wang Y, Liu X, Zhang W et al (2020) Effects of Si/Al ratio on the efflorescence and properties of fly ash based geopolymer. J Clean Prod 244:118852. https://doi.org/10.1016/j.jclepro.2019.118852

    Article  CAS  Google Scholar 

  55. Yao X, Yang T, Zhang Z (2016) Compressive strength development and shrinkage of alkali-activated fly ash–slag blends associated with efflorescence. Mater Struct Constr 49:2907–2918. https://doi.org/10.1617/s11527-015-0694-3

    Article  CAS  Google Scholar 

  56. Allahverdi A, Najafi Kani E, Hossain KMA, Lachemi M (2015) Methods to control efflorescence in alkali-activated cement-based materials. Woodhead Publishing Limited, Cambridge

    Book  Google Scholar 

  57. Vafaei M, Allahverdi A (2017) High strength geopolymer binder based on waste-glass powder. Adv Powder Technol 28:215–222. https://doi.org/10.1016/j.apt.2016.09.034

    Article  CAS  Google Scholar 

  58. Xue X, Liu YL, Dai JG et al (2018) Inhibiting efflorescence formation on fly ash–based geopolymer via silane surface modification. Cem Concr Compos 94:43–52. https://doi.org/10.1016/j.cemconcomp.2018.08.013

    Article  CAS  Google Scholar 

  59. Zhang Z, Yao X, Zhu H (2010) Potential application of geopolymers as protection coatings for marine concrete II. microstructure and anticorrosion mechanism. Appl Clay Sci 49:7–12. https://doi.org/10.1016/j.clay.2010.04.024

    Article  CAS  Google Scholar 

  60. Glasby T, Day J, Genrich R, Aldred J (2015) EFC geopolymer concrete aircraft pavements at Brisbane West Wellcamp Airport, vol 11, pp 1–9

  61. Davis G, Montes C, Eklund S (2017) Preparation of lunar regolith based geopolymer cement under heat and vacuum. Adv Space Res 59:1872–1885. https://doi.org/10.1016/j.asr.2017.01.024

    Article  CAS  Google Scholar 

  62. Anu Karthi AKS, Cindrella L (2019) Self-humidifying novel chitosan-geopolymer hybrid membrane for fuel cell applications. Carbohydr Polym 223:115073. https://doi.org/10.1016/j.carbpol.2019.115073

    Article  CAS  Google Scholar 

  63. Davidovits J, France S (2017) Recent progresses in concretes for nuclear waste and uranium waste containment. J Nat Gas Sci Eng 38:323–332

    Article  Google Scholar 

  64. Salehi S, Khattak MJ, Bwala AH, Karbalaei FS (2017) Characterization, morphology and shear bond strength analysis of geopolymers: implications for oil and gas well cementing applications. J Nat Gas Sci Eng 38:323–332. https://doi.org/10.1016/j.jngse.2016.12.042

    Article  CAS  Google Scholar 

  65. Davidovits J (2002) 30 Years of successes and failures in geopolymer applications. market trends and potential breakthroughs. In: Geopolymer 2002 conference, pp 1–16. https://doi.org/10.1017/CBO9781107415324.004

  66. Łach M, Korniejenko K, Mikuła J (2016) Thermal insulation and thermally resistant materials made of geopolymer foams. Procedia Eng 151:410–416. https://doi.org/10.1016/j.proeng.2016.07.350

    Article  CAS  Google Scholar 

  67. Kim HK, Lee HK (2010) Acoustic absorption modeling of porous concrete considering the gradation and shape of aggregates and void ratio. J Sound Vib 329:866–879. https://doi.org/10.1016/j.jsv.2009.10.013

    Article  Google Scholar 

  68. Liew YM, Heah CY, Yuan LL et al (2017) Formation of one-part-mixing geopolymers and geopolymer ceramics from geopolymer powder. Constr Build Mater 156:9–18. https://doi.org/10.1016/j.conbuildmat.2017.08.110

    Article  CAS  Google Scholar 

  69. Bai C, Colombo P (2018) Processing, properties and applications of highly porous geopolymers: a review. Ceram Int 44:16103–16118. https://doi.org/10.1016/j.ceramint.2018.05.219

    Article  CAS  Google Scholar 

  70. Jämstrop E, StrØmme M, Bredenberg S (2012) Influence of drug distribution and solubility on release from geopolymer pellets—a finite element method study. J Pharm Sci 101:1803–1810. https://doi.org/10.1002/jps

    Article  Google Scholar 

  71. Chen H, Zhang YJ, He PY et al (2020) Coupling of self-supporting geopolymer membrane with intercepted Cr(III) for dye wastewater treatment by hybrid photocatalysis and membrane separation. Appl Surf Sci 515:146024. https://doi.org/10.1016/j.apsusc.2020.146024

    Article  CAS  Google Scholar 

  72. Falah M, MacKenzie KJD, Knibbe R et al (2016) New composites of nanoparticle Cu(I) oxide and titania in a novel inorganic polymer (geopolymer) matrix for destruction of dyes and hazardous organic pollutants. J Hazard Mater 318:772–782. https://doi.org/10.1016/j.jhazmat.2016.06.016

    Article  CAS  Google Scholar 

  73. Ge Y, Yuan Y, Wang K et al (2015) Preparation of geopolymer-based inorganic membrane for removing Ni2+ from wastewater. J Hazard Mater 299:711–718. https://doi.org/10.1016/j.jhazmat.2015.08.006

    Article  CAS  Google Scholar 

  74. Chen S, Zhang W, Sorge LP, Seo D (2019) Exploratory synthesis of low-silica nanozeolites through geopolymer chemistry. Cryst Growth Des 19:1167–1171. https://doi.org/10.1021/acs.cgd.8b01636

    Article  CAS  Google Scholar 

  75. Chen L, Zheng K, Liu Y (2017) Geopolymer-supported photocatalytic TiO2 film: preparation and characterization. Constr Build Mater 151:63–70. https://doi.org/10.1016/j.conbuildmat.2017.06.097

    Article  CAS  Google Scholar 

  76. Al-Zeer MIM, Mackenzie KJD (2019) Fly ash-based geopolymers as sustainable bifunctional heterogeneous catalysts and their reactivity in friedel-crafts acylation reactions. Catalysts. https://doi.org/10.3390/catal9040372

    Article  Google Scholar 

  77. Song Y, Li Z, Zhang J et al (2020) A low-cost biomimetic heterostructured multilayer membrane with geopolymer microparticles for broad-spectrum water purification. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.0c00440

    Article  Google Scholar 

  78. Zhang YJ, He PY, Yang MY, Kang L (2017) A new graphene bottom ash geopolymeric composite for photocatalytic H2 production and degradation of dyeing wastewater. Int J Hydrog Energy 42:20589–20598. https://doi.org/10.1016/j.ijhydene.2017.06.156

    Article  CAS  Google Scholar 

  79. He P, Wang M, Fu S et al (2016) Effects of Si/Al ratio on the structure and properties of metakaolin based geopolymer. Ceram Int 42:14416–14422. https://doi.org/10.1016/j.ceramint.2016.06.033

    Article  CAS  Google Scholar 

  80. Tavor D, Wolfson A, Shamaev A, Shvarzman A (2007) Recycling of industrial wastewater by its immobilization in geopolymer cement. Ind Eng Chem Res 46:6801–6805. https://doi.org/10.1021/ie0616996

    Article  CAS  Google Scholar 

  81. Catauro M, Bollino F, Papale F, Lamanna G (2014) Investigation of the sample preparation and curing treatment effects on mechanical properties and bioactivity of silica rich metakaolin geopolymer. Mater Sci Eng C 36:20–24. https://doi.org/10.1016/j.msec.2013.11.026

    Article  CAS  Google Scholar 

  82. Tian Q, Nakama S, Sasaki K (2019) Immobilization of cesium in fly ash-silica fume based geopolymers with different Si/Al molar ratios. Sci Total Environ 687:1127–1137. https://doi.org/10.1016/j.scitotenv.2019.06.095

    Article  CAS  Google Scholar 

  83. Novais RM, Pullar RC, Labrincha JA (2020) Geopolymer foams: an overview of recent advancements. Prog Mater Sci. https://doi.org/10.1016/j.pmatsci.2019.100621

    Article  Google Scholar 

  84. Tan TH, Mo KH, Ling TC, Lai SH (2020) Current development of geopolymer as alternative adsorbent for heavy metal removal. Environ Technol Innov 18:100684. https://doi.org/10.1016/j.eti.2020.100684

    Article  Google Scholar 

  85. Asim N, Alghoul M, Mohammad M et al (2019) Emerging sustainable solutions for depollution: geopolymers. Constr Build Mater 199:540–548. https://doi.org/10.1016/j.conbuildmat.2018.12.043

    Article  CAS  Google Scholar 

  86. da Costa Rocha AC, Scaratti G, Moura-nickel CD et al (2020) Economical and technological aspects of copper removal from water using a geopolymer and natural zeolite. Water Air Soil Pollut 361:1–15

    Google Scholar 

  87. Papa E, Medri V, Paillard C et al (2019) Geopolymer-hydrotalcite composites for CO2 capture. J Clean Prod 237:117738. https://doi.org/10.1016/j.jclepro.2019.117738

    Article  CAS  Google Scholar 

  88. Saufi H, El Alouani M, Alehyen S et al (2020) Photocatalytic degradation of methylene blue from aqueous medium onto perlite-based geopolymer. Int J Chem Eng. https://doi.org/10.1155/2020/9498349

    Article  Google Scholar 

  89. Siyal AA, Shamsuddin MR, Rabat NE et al (2019) Fly ash based geopolymer for the adsorption of anionic surfactant from aqueous solution. J Clean Prod 229:232–243. https://doi.org/10.1016/j.jclepro.2019.04.384

    Article  CAS  Google Scholar 

  90. Waijarean N, Mackenzie KJD, Asavapisit S et al (2017) Synthesis and properties of geopolymers based on water treatment residue and their immobilization of some heavy metals. J Mater Sci 52:7345–7359. https://doi.org/10.1007/s10853-017-0970-4

    Article  CAS  Google Scholar 

  91. Chen H, Zhang YJ, He PY et al (2020) Novel activated carbon route to low-cost geopolymer based porous composite with high mechanical resistance and enhanced CO2 capacity. Microporous Mesoporous Mater. https://doi.org/10.1016/j.micromeso.2020.110282

    Article  Google Scholar 

  92. Minelli M, Papa E, Medri V et al (2018) Characterization of novel geopolymer-zeolite composites as solid adsorbents for CO2 capture. Chem Eng J 341:505–515. https://doi.org/10.1016/j.cej.2018.02.050

    Article  CAS  Google Scholar 

  93. Minelli M, Medri V, Papa E et al (2016) Geopolymers as solid adsorbent for CO2 capture. Chem Eng Sci 148:267–274. https://doi.org/10.1016/j.ces.2016.04.013

    Article  CAS  Google Scholar 

  94. Sazali N (2020) Review A review of the application of carbon-based membranes to hydrogen separation. J Mater Sci 55:11052–11070. https://doi.org/10.1007/s10853-020-04829-7

    Article  CAS  Google Scholar 

  95. Liu X, Wu Y, Li M et al (2020) Effects of graphene oxide on microstructure and mechanical properties of graphene oxide-geopolymer composites. Constr Build Mater 247:118544. https://doi.org/10.1016/j.conbuildmat.2020.118544

    Article  CAS  Google Scholar 

  96. Hausmann A, Duke MC, Demmer T (2012) Membrane processing: dairy and beverage applications. In: Membrane processing, pp 17–51

  97. Khanzada NK, Farid MU, Kharraz JA et al (2020) Removal of organic micropollutants using advanced membrane-based water and wastewater treatment: a review. J Membr Sci 598:117672. https://doi.org/10.1016/j.memsci.2019.117672

    Article  CAS  Google Scholar 

  98. Zhang G, Jin W, Xu N (2018) Design and fabrication of ceramic catalytic membrane reactors for green chemical engineering applications. Engineering 4:848–860. https://doi.org/10.1016/j.eng.2017.05.001

    Article  CAS  Google Scholar 

  99. Fard AK, McKay G, Buekenhoudt A et al (2018) Inorganic membranes: preparation and application for water treatment and desalination. Materials (Basel). https://doi.org/10.3390/ma11010074

    Article  Google Scholar 

  100. Oliveira SSL, Oliveira SSL, da Silva Barbosa Ferreira R et al (2019) Development of hollow fiber membranes with alumina and waste of quartzite. Mater Res 22:1–7. https://doi.org/10.1590/1980-5373-MR-2019-0171

    Article  Google Scholar 

  101. Lee A, Elam JW, Darling SB (2016) Membrane materials for water purification: design, development, and application. Environ Sci Water Res Technol 2:17–42. https://doi.org/10.1039/c5ew00159e

    Article  CAS  Google Scholar 

  102. Tang S, Zhang Z, Liu J, Zhang X (2017) Double-win effects of in situ ozonation on improved filterability of mixed liquor and ceramic UF membrane fouling mitigation in wastewater treatment? J Membr Sci 533:112–120. https://doi.org/10.1016/j.memsci.2017.03.035

    Article  CAS  Google Scholar 

  103. Shao N, Tang S, Li S et al (2020) Defective analcime/geopolymer composite membrane derived from fly ash for ultrafast and highly efficient filtration of organic pollutants. J Hazard Mater 388:121736. https://doi.org/10.1016/j.jhazmat.2019.121736

    Article  CAS  Google Scholar 

  104. Zhu B, Duke M, Dumée LF et al (2018) Short review on porous metal membranes—fabrication, commercial products, and applications. Membranes (Basel). https://doi.org/10.3390/membranes8030083

    Article  Google Scholar 

  105. Mallicoat S, Sarin P, Kriven WM (2005) Novel, alkali-bonded, ceramic filtration membranes. Ceram Eng Sci Proc 29:37–45

    Article  Google Scholar 

  106. Jedidi I, Saı S, Khmakem S et al (2009) New ceramic microfiltration membranes from mineral coal fly ash. Arab J Chem 2:31–39. https://doi.org/10.1016/j.arabjc.2009.07.006

    Article  CAS  Google Scholar 

  107. Kazemimoghadam M (2010) New nanopore zeolite membranes for water treatment. Desalination 251:176–180. https://doi.org/10.1016/j.desal.2009.11.036

    Article  CAS  Google Scholar 

  108. Fang J, Qin G, Wei W, Zhao X (2011) Preparation and characterization of tubular supported ceramic microfiltration membranes from fly ash. Sep Purif Technol 80:585–591. https://doi.org/10.1016/j.seppur.2011.06.014

    Article  CAS  Google Scholar 

  109. Fang J, Qin G, Wei W et al (2013) Elaboration of new ceramic membrane from spherical fly ash for micro filtration of rigid particle suspension and oil-in-water emulsion. Desalination 311:113–126. https://doi.org/10.1016/j.desal.2012.11.008

    Article  CAS  Google Scholar 

  110. He Y, Cui X, Liu X et al (2013) Preparation of self-supporting NaA zeolite membranes using geopolymers. J Membr Sci 447:66–72. https://doi.org/10.1016/j.memsci.2013.07.027

    Article  CAS  Google Scholar 

  111. Landi E, Medri V, Papa E et al (2013) Alkali-bonded ceramics with hierarchical tailored porosity. Appl Clay Sci 73:56–64. https://doi.org/10.1016/j.clay.2012.09.027

    Article  CAS  Google Scholar 

  112. Jing L, Yan H, Yuan Y et al (2014) The preparation and characterization of geopolymer based inorganic membranes. Key Eng Mater 602–603:80–83. https://doi.org/10.4028/www.scientific.net/KEM.602-603.80

    Article  CAS  Google Scholar 

  113. Zhang J, He Y, Wang YP et al (2014) Synthesis of a self-supporting faujasite zeolite membrane using geopolymer gel for separation of alcohol/water mixture. Mater Lett 116:167–170. https://doi.org/10.1016/j.matlet.2013.11.008

    Article  CAS  Google Scholar 

  114. Singh G, Bulasara VK (2015) Preparation of low-cost microfiltration membranes from fly ash. Desalin Water Treat 3994:1–9. https://doi.org/10.1080/19443994.2013.855677

    Article  CAS  Google Scholar 

  115. Xu M, He Y, Wang C et al (2015) Preparation and characterization of a self-supporting inorganic membrane based on metakaolin-based geopolymers. Appl Clay Sci 115:254–259. https://doi.org/10.1016/j.clay.2015.03.019

    Article  CAS  Google Scholar 

  116. Azarshab M, Mohammadi F, Maghsoodloorad H, Mohammadi T (2016) Ceramic membrane synthesis based on alkali activated blast furnace slag for separation of water from ethanol. Ceram Int 42:15568–15574. https://doi.org/10.1016/j.ceramint.2016.07.005

    Article  CAS  Google Scholar 

  117. Chen M, Zhu L, Dong Y et al (2016) Waste-to-resource strategy to fabricate highly porous whisker-structured mullite ceramic membrane for simulated oil-in-water emulsion wastewater treatment. ACS Sustain Chem Eng 4:2098–2106. https://doi.org/10.1021/acssuschemeng.5b01519

    Article  CAS  Google Scholar 

  118. Suresh K, Pugazhenthi G, Uppaluri R (2016) Fly ash based ceramic microfiltration membranes for oil–water emulsion treatment: parametric optimization using response surface methodology. J Water Process Eng 13:27–43. https://doi.org/10.1016/j.jwpe.2016.07.008

    Article  Google Scholar 

  119. Wei Z, Hou J, Zhu Z (2016) High-aluminum fly ash recycling for fabrication of cost-effective ceramic membrane supports. J Alloys Compd 683:474–480. https://doi.org/10.1016/j.jallcom.2016.05.088

    Article  CAS  Google Scholar 

  120. Bai C, Colombo P (2017) High-porosity geopolymer membrane supports by peroxide route with the addition of egg white as surfactant. Ceram Int 43:2267–2273. https://doi.org/10.1016/j.ceramint.2016.10.205

    Article  CAS  Google Scholar 

  121. Li Q, He Y, Xu M et al (2017) Study on the removal of Ca2+ and Mg2+ in water by the geopolymer-based inorganic membrane. Chongqing Funct Mater 48:1215–1220. https://doi.org/10.3969/j.issn.1001-9731.2017.01.039

    Article  Google Scholar 

  122. Mohammadi F, Mohammadi T (2017) Optimal conditions of porous ceramic membrane synthesis based on alkali activated blast furnace slag using Taguchi method. Ceram Int 43:14369–14379. https://doi.org/10.1016/j.ceramint.2017.07.197

    Article  CAS  Google Scholar 

  123. Xu M, He Y, Wang Y, Cui X (2017) Preparation of a non-hydrothermal NaA zeolite membrane and defect elimination by vacuum-inhalation repair method. Chem Eng Sci 158:117–123. https://doi.org/10.1016/j.ces.2016.10.001

    Article  CAS  Google Scholar 

  124. Naveed A, Saeed F, Khraisheh M et al (2019) Porosity control of self-supported geopolymeric membrane through hydrogen peroxide and starch additives. Desalin water Treat 152:11–15. https://doi.org/10.5004/dwt.2019.23895

    Article  CAS  Google Scholar 

  125. Naveed A, Noor-ul-Amin KM et al (2019) Desalination and water treatment synthesis and characterization of fly ash based geopolymeric membrane for produced water treatment synthesis and characterization of fly ash based geopolymeric membrane for produced water treatment. Desalin Water Treat 161:126–131. https://doi.org/10.5004/dwt.2019.24283

    Article  CAS  Google Scholar 

  126. Wang J, Ge Y, He Y et al (2019) A porous gradient geopolymer-based tube membrane with high PM removal rate for air pollution. J Clean Prod 217:335–343. https://doi.org/10.1016/j.jclepro.2019.01.268

    Article  CAS  Google Scholar 

  127. Xu M, He Y, Liu Z et al (2019) Preparation of geopolymer inorganic membrane and purification of pulp-papermaking green liquor. Appl Clay Sci 168:269–275. https://doi.org/10.1016/j.clay.2018.11.024

    Article  CAS  Google Scholar 

  128. Zhang YJ, Chen H, He PY, Juan Li C (2019) Developing silica fume-based self-supported ECR-1 zeolite membrane for seawater desalination. Mater Lett 236:538–541. https://doi.org/10.1016/j.matlet.2018.10.167

    Article  CAS  Google Scholar 

  129. Goswami KP, Pugazhenthi G (2020) Treatment of poultry slaughterhouse wastewater using tubular micro filtration membrane with fly ash as key precursor. J Water Process Eng 37:101361. https://doi.org/10.1016/j.jwpe.2020.101361

    Article  Google Scholar 

  130. He PY, Zhang YJ, Chen H et al (2020) Low-cost and facile synthesis of geopolymer-zeolite composite membrane for chromium(VI) separation from aqueous solution. J Hazard Mater 392:122359. https://doi.org/10.1016/j.jhazmat.2020.122359

    Article  CAS  Google Scholar 

  131. Li CJ, Zhang YJ, Chen H, He PY (2020) High value-added utilization of silica fume to synthesize ZSM-35 zeolite membrane for Cd2+ removal. Mater Lett 260:126940. https://doi.org/10.1016/j.matlet.2019.126940

    Article  CAS  Google Scholar 

  132. Li L, Shi Q, Huang L et al (2020) Green synthesis of faujasite-La0.6Sr0.4Co0.2Fe0.8O3−δ mineral nanocomposite membrane for low temperature advanced fuel cells. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2020.05.275

    Article  Google Scholar 

  133. Luukkonen T, Yliniemi J, Sreenivasan H et al (2020) Ag- or Cu-modified geopolymer filters for water treatment manufactured by 3D printing, direct foaming, or granulation. Sci Rep 10:1–14. https://doi.org/10.1038/s41598-020-64228-5

    Article  CAS  Google Scholar 

  134. Subaer S, Haris A, Irhamsyah A et al (2020) Pervaporation membrane based on laterite zeolite-geopolymer for ethanol-water separation. J Clean Prod 249:119413. https://doi.org/10.1016/j.jclepro.2019.119413

    Article  CAS  Google Scholar 

  135. Vieira L, Maschio LJ, De Araújo EP et al (2019) Development of geopolymers for catalyst support applications. Mater Res. https://doi.org/10.1590/1980-5373-MR-2018-0770

    Article  Google Scholar 

  136. Gupta P, Paul S (2014) Solid acids: green alternatives for acid catalysis. Catal Today 236:153–170. https://doi.org/10.1016/j.cattod.2014.04.010

    Article  CAS  Google Scholar 

  137. SCOPUS (2020) Research with the words catalytic AND geopolymer. https://www.scopus.com/results/results.uri?numberOfFields=0&src=s&clickedLink=&edit=&editSaveSearch=&origin=searchbasic&authorTab=&affiliationTab=&advancedTab=&scint=1&menu=search&tablin=&searchterm1=catalytic+AND+geopolymer&field1=TITLE_ABS_KEY&dateType=. Accessed 15 April 2020

  138. Černý Z, Jakubec I, Bezdička P, Štengl V (2009) Preparation of photocatalytic layers based on geopolymer. Ceram Eng Sci Proc 29:113–122

    Google Scholar 

  139. Ancora R, Borsa M, Cassar L (2010) Titanium dioxide based photocatalytic composites and derived products on a metakaolin support, vol 1, pp 1–5

  140. Sazama P, Bortnovsky O, Dědeček J et al (2011) Geopolymer based catalysts-new group of catalytic materials. Catal Today 164:92–99. https://doi.org/10.1016/j.cattod.2010.09.008

    Article  CAS  Google Scholar 

  141. Gasca-Tirado JR, Manzano-Ramírez A, Villaseñor-Mora C et al (2012) Incorporation of photoactive TiO2 in an aluminosilicate inorganic polymer by ion exchange. Microporous Mesoporous Mater 153:282–287. https://doi.org/10.1016/j.micromeso.2011.11.026

    Article  CAS  Google Scholar 

  142. Zhang YJ, Liu LC, Xu Y et al (2012) A new alkali-activated steel slag-based cementitious material for photocatalytic degradation of organic pollutant from waste water. J Hazard Mater 209–210:146–150. https://doi.org/10.1016/j.jhazmat.2012.01.001

    Article  CAS  Google Scholar 

  143. Zhang Y, Liu L (2013) Fly ash-based geopolymer as a novel photocatalyst for degradation of dye from wastewater. Particuology 11:353–358. https://doi.org/10.1016/j.partic.2012.10.007

    Article  CAS  Google Scholar 

  144. Zhang YJ, Liu LC, Ni LL, Wang BL (2013) A facile and low-cost synthesis of granulated blast furnace slag-based cementitious material coupled with Fe2O3 catalyst for treatment of dye wastewater. Appl Catal B Environ 138–139:9–16. https://doi.org/10.1016/j.apcatb.2013.02.025

    Article  CAS  Google Scholar 

  145. Gasca-Tirado JR, Manzano-Ramírez A, Vazquez-Landaverde PA et al (2014) Ion-exchanged geopolymer for photocatalytic degradation of a volatile organic compound. Mater Lett 134:222–224. https://doi.org/10.1016/j.matlet.2014.07.090

    Article  CAS  Google Scholar 

  146. Zhang YJ, Chai Q (2014) Alkali-activated blast furnace slag-based nanomaterial as a novel catalyst for synthesis of hydrogen fuel. Fuel 115:84–87. https://doi.org/10.1016/j.fuel.2013.06.051

    Article  CAS  Google Scholar 

  147. Zhang YJ, Kang L, Si HX, Zhang JF (2014) A novel alkali-activated magnesium slag-based nanocomposite for photocatalytic production of hydrogen. Integr Ferroelectr 154:120–127. https://doi.org/10.1080/10584587.2014.904189

    Article  CAS  Google Scholar 

  148. Candamano S, Frontera P, Macario A et al (2015) Preparation and characterization of active Ni-supported catalyst for syngas production. Chem Eng Res Des 96:78–86. https://doi.org/10.1016/j.cherd.2015.02.011

    Article  CAS  Google Scholar 

  149. Falah M, MacKenzie KJD, Hanna JV, Page SJ (2015) Synthesis of new composites of inorganic polymers (geopolymers) with metal oxide nanoparticles and their photodegradation of organic pollutants by Mahroo Falah

  150. Hashimoto S, MacHino T, Takeda H et al (2015) Antimicrobial activity of geopolymers ion-exchanged with copper ions. Ceram Int 41:13788–13792. https://doi.org/10.1016/j.ceramint.2015.08.061

    Article  CAS  Google Scholar 

  151. Kang L, Zhang YJ, Wang LL et al (2015) Alkali-activated steel slag-based mesoporous material as a new photocatalyst for degradation of dye fromwastewater. Integr Ferroelectr 162:8–17. https://doi.org/10.1080/10584587.2015.1037197

    Article  CAS  Google Scholar 

  152. Sharma S, Medpelli D, Chen S, Seo DK (2015) Calcium-modified hierarchically porous aluminosilicate geopolymer as a highly efficient regenerable catalyst for biodiesel production. RSC Adv 5:65454–65461. https://doi.org/10.1039/c5ra01823d

    Article  CAS  Google Scholar 

  153. Zhang YJ, Kang L, Liu LC et al (2015) Synthesis of a novel alkali-activated magnesium slag-based nanostructural composite and its photocatalytic performance. Appl Surf Sci 331:399–406. https://doi.org/10.1016/j.apsusc.2015.01.090

    Article  CAS  Google Scholar 

  154. Alzeer MIM, MacKenzie KJD, Keyzers RA (2016) Porous aluminosilicate inorganic polymers (geopolymers): a new class of environmentally benign heterogeneous solid acid catalysts. Appl Catal A Gen 524:173–181. https://doi.org/10.1016/j.apcata.2016.06.024

    Article  CAS  Google Scholar 

  155. Duan P, Yan C, Luo W, Zhou W (2016) Effects of adding nano-TiO2 on compressive strength, drying shrinkage, carbonation and microstructure of fluidized bed fly ash based geopolymer paste. Constr Build Mater 106:115–125. https://doi.org/10.1016/j.conbuildmat.2015.12.095

    Article  CAS  Google Scholar 

  156. Kang L, Zhang YJ, Yang MY et al (2016) A novel V-doped CeO2 loaded alkali-activated steel slag-based nanocomposite for photocatalytic degradation of malachite green. Integr Ferroelectr 170:1–9. https://doi.org/10.1080/10584587.2016.1165572

    Article  CAS  Google Scholar 

  157. Li C, He Y, Tang Q et al (2016) Study of the preparation of CdS on the surface of geopolymer spheres and photocatalyst performance. Mater Chem Phys 178:204–210. https://doi.org/10.1016/j.matchemphys.2016.05.013

    Article  CAS  Google Scholar 

  158. Strini A, Roviello G, Ricciotti L et al (2016) TiO2-based photocatalytic geopolymers for nitric oxide degradation. Materials (Basel) 9:1–13. https://doi.org/10.3390/ma9070513

    Article  CAS  Google Scholar 

  159. Zhang YJ, Yang MY, Zhang L et al (2016) A new graphene/geopolymer nanocomposite for degradation of dye wastewater. Integr Ferroelectr 171:38–45. https://doi.org/10.1080/10584587.2016.1171178

    Article  CAS  Google Scholar 

  160. Alzeer MIM, MacKenzie KJD, Keyzers RA (2017) Facile synthesis of new hierarchical aluminosilicate inorganic polymer solid acids and their catalytic performance in alkylation reactions. Microporous Mesoporous Mater 241:316–325. https://doi.org/10.1016/j.micromeso.2016.12.018

    Article  CAS  Google Scholar 

  161. Armayani M, Pratama MA, Subaer S (2017) The properties of nano silver (Ag)-geopolymer as antibacterial composite for functional surface materials. MATEC Web Conf. https://doi.org/10.1051/matecconf/20179701010

    Article  Google Scholar 

  162. Kang L, Zhang YJ, Zhang L, Zhang K (2017) Preparation, characterization and photocatalytic activity of novel CeO2 loaded porous alkali-activated steel slag-based binding material. Int J Hydrog Energy 42:17341–17349. https://doi.org/10.1016/j.ijhydene.2017.04.035

    Article  CAS  Google Scholar 

  163. Zhang YJ, Zhang K, Kang L, Zhang L (2017) A new In2O3 and NiO co-loaded fly ash-based nanostructural geopolymer for photocatalytic H2 evolution. Integr Ferroelectr 182:1–9. https://doi.org/10.1080/10584587.2017.1352376

    Article  CAS  Google Scholar 

  164. Zhang YJ, Zhang L, Kang L et al (2017) A new CaWO4/alkali-activated blast furnace slag-based cementitious composite for production of hydrogen. Int J Hydrog Energy 42:3690–3697. https://doi.org/10.1016/j.ijhydene.2016.07.173

    Article  CAS  Google Scholar 

  165. Zhang YJ, Zhang L, Zhang K, Kang L (2017) Synthesis of eco-friendly CaWO4/CSH nanocomposite and photocatalytic degradation of dyeing pollutant. Integr Ferroelectr 181:113–122. https://doi.org/10.1080/10584587.2017.1352401

    Article  CAS  Google Scholar 

  166. Alzeer MIM, MacKenzie KJD (2018) Synthesis and catalytic properties of new sustainable aluminosilicate heterogeneous catalysts derived from fly ash. ACS Sustain Chem Eng 6:5273–5282. https://doi.org/10.1021/acssuschemeng.7b04923

    Article  CAS  Google Scholar 

  167. John S, Hu Z, Zhu M (2018) Synthesis of novel geopolymer supported nano bimetallic catalysts and its application for isopropanol dehydrogenation. Key Eng Mater 777:190–195. https://doi.org/10.4028/www.scientific.net/KEM.777.190

    Article  Google Scholar 

  168. Saputra E, Nugraha MW, Helwani Z et al (2018) Synthesis of geopolymer from rice husk ash for biodiesel production of Calophyllum inophyllum seed oil. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/345/1/012019

    Article  Google Scholar 

  169. Sarkar M, Maiti M, Maiti S et al (2018) ZnO–SiO2 nanohybrid decorated sustainable geopolymer retaining anti-biodeterioration activity with improved durability. Mater Sci Eng C 92:663–672. https://doi.org/10.1016/j.msec.2018.07.005

    Article  CAS  Google Scholar 

  170. Zhang YJ, He PY, Chen H (2018) A novel CdO/graphene alkali-activated steel slag nanocomposite for photocatalytic degradation of dye wastewater. Ferroelectrics 522:1–8. https://doi.org/10.1080/00150193.2017.1391587

    Article  CAS  Google Scholar 

  171. Zhang YJ, He PY, Chen H, Liu LC (2018) Green transforming metallurgical residue into alkali-activated silicomanganese slag-based cementitious material as photocatalyst. Materials (Basel) 11:1–10. https://doi.org/10.3390/ma11091773

    Article  CAS  Google Scholar 

  172. Zhang YJ, He PY, Zhang YX, Chen H (2018) A novel electroconductive graphene/fly ash-based geopolymer composite and its photocatalytic performance. Chem Eng J 334:2459–2466. https://doi.org/10.1016/j.cej.2017.11.171

    Article  CAS  Google Scholar 

  173. Zhang YJ, Zhang YX, Yang MY (2018) Synthesis of environment-friendly graphene reinforced slag-based nanocomposite and performance of photocatalytic H2 generation. Ferroelectrics 522:36–44. https://doi.org/10.1080/00150193.2017.1391609

    Article  CAS  Google Scholar 

  174. Bendoni R, Miccio F, Medri V et al (2019) Geopolymer composites for the catalytic cleaning of tar in biomass-derived gas. Renew Energy 131:1107–1116. https://doi.org/10.1016/j.renene.2018.08.067

    Article  CAS  Google Scholar 

  175. He PY, Zhang YJ, Chen H, Liu LC (2019) Development of an eco-efficient CaMoO4/electroconductive geopolymer composite for recycling silicomanganese slag and degradation of dye wastewater. J Clean Prod 208:1476–1487. https://doi.org/10.1016/j.jclepro.2018.10.176

    Article  CAS  Google Scholar 

  176. Zhang YJ, He PY, Yang MY et al (2019) Renewable conversion of slag to graphene geopolymer for H2 production and wastewater treatment. Catal Today. https://doi.org/10.1016/j.cattod.2019.02.003

    Article  Google Scholar 

  177. Bedon A, Carabba L, Bignozzi MC, Glisenti A (2020) Environmentally friendly La0.6Sr0.4Ga0.3Fe0.7O3 (LSGF)-functionalized fly-ash geopolymers for pollutants abatement in industrial processes. Catal Lett 3:2–7. https://doi.org/10.1007/s10562-020-03132-z

    Article  CAS  Google Scholar 

  178. Huang J, Li Z, Zhang J et al (2020) In-situ synchronous carbonation and self-activation of biochar/geopolymer composite membrane: enhanced catalyst for oxidative degradation of tetracycline in water. Chem Eng J. https://doi.org/10.1016/j.cej.2020.125528

    Article  Google Scholar 

  179. Maiti M, Sarkar M, Maiti S et al (2020) Modification of geopolymer with size controlled TiO2 nanoparticle for enhanced durability and catalytic dye degradation under UV light. J Clean Prod 255:120183. https://doi.org/10.1016/j.jclepro.2020.120183

    Article  CAS  Google Scholar 

  180. Petlitckaia S, Barré Y, Piallat T et al (2020) Functionalized geopolymer foams for cesium removal from liquid nuclear waste. J Clean Prod. https://doi.org/10.1016/j.jclepro.2020.122400

    Article  Google Scholar 

  181. Su Q, Yang S, He Y et al (2020) Prepared self-growing supported nickel catalyst by recovering Ni(II) from metal wastewater using geopolymer microspheres. J Hazard Mater 389:121919. https://doi.org/10.1016/j.jhazmat.2019.121919

    Article  CAS  Google Scholar 

  182. Zhang LW, Kai MF, Chen XH (2020) Si-doped graphene in geopolymer: its interfacial chemical bonding, structure evolution and ultrastrong reinforcing ability. Cem Concr Compos 109:103522. https://doi.org/10.1016/j.cemconcomp.2020.103522

    Article  CAS  Google Scholar 

  183. Hitam CNC, Jalil AA (2020) A review on exploration of Fe2O3 photocatalyst towards degradation of dyes and organic contaminants. J Environ Manag 258:110050. https://doi.org/10.1016/j.jenvman.2019.110050

    Article  CAS  Google Scholar 

  184. Kumar A, Raizada P, Singh P et al (2019) Perspective and status of polymeric graphitic carbon nitride based Z-scheme photocatalytic systems for sustainable photocatalytic water purification. Elsevier, Amsterdam

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Coordination of Improvement of Higher Education Personnel (CAPES - Brazil)/Brazil [Grant Code 001; and CAPES-PRINT Project Number 88887.310560/2018-00] and National Council for Scientific and Technological Development (CNPq - Brazil) [Grant Number 405892/2013 6] for their financial support. ERC is grateful to Project RTI2018-099668-BC22 of the Ministerio de Ciencia, Innovación y Universidades, and project UMA18-FEDERJA-126 of the Junta de Andalucía and FEDER funds.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [DGDR; RFPMM]; writing—original draft preparation: [DGDR; RMP; RAP; ER-C]; writing—review and editing: [DGDR; RMP; RAP; ER-C; RFPMM]; funding acquisition: [RFPMM], project administration: [RFPMM]; supervision: [RFPMM].

Corresponding author

Correspondence to Regina de Fatima Peralta Muniz Moreira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: M. Grant Norton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Della Rocca, D.G., Peralta, R.M., Peralta, R.A. et al. Adding value to aluminosilicate solid wastes to produce adsorbents, catalysts and filtration membranes for water and wastewater treatment. J Mater Sci 56, 1039–1063 (2021). https://doi.org/10.1007/s10853-020-05276-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05276-0

Navigation