Skip to main content
Log in

Tracing the recrystallization of warm temper-rolled Fe–6.5 wt% Si non-oriented electrical steel using a quasi in situ EBSD technique

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Fe–6.5 wt% Si non-oriented electrical steel is an excellent soft magnetic material due to the low core losses at high frequencies and near-zero magnetostriction. In this study, an Fe–6.5 wt% Si non-oriented electrical steel was processed by hot rolling, warm cross rolling, intermediate annealing, warm temper rolling and final annealing. The evolution of microstructure and microtexture during final annealing was investigated using a quasi in situ EBSD (electron backscatter diffraction) technique. After warm temper rolling, an area on the ND–RD (normal direction–rolling direction) cross section was marked by micro-hardness indents, and the recrystallization of individual grains in this area was traced under EBSD when the annealing time was increased. Due to the differences in the microstructure, texture and stored energy after warm temper rolling, the surface and center regions showed different recrystallization behaviors. The recrystallization of the surface region was essentially initiated by the growth of existing crystallites having lower stored energy than their neighboring areas (essentially no nucleation), while the center region showed both nucleation and grain growth during annealing. The growth rates of individual grains were evaluated with respect to the number of neighboring grains, and they approximately followed the von Neumann–Mullins law of grain growth. The surface region showed a much faster growth rate than the center region. The final texture was dominated by <111>//ND and <113>//ND in both the surface and center regions, due to the preferred growth of these grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

References

  1. Abe M, Takada Y, Murakami T, Tanaka Y, Mihara Y (1989) Magnetic properties of commercially produced Fe–6.5 wt% Si sheet. J Mater Eng 11(1):109–116

    CAS  Google Scholar 

  2. Phway T, Moses A (2008) Magnetostriction trend of non-oriented 6.5% Si–Fe. J Magn Magn Mater 320(20):611–613

    Google Scholar 

  3. Takada Y, Abe M, Masuda S, Inagaki J (1988) Commercial scale production of Fe–6.5 wt.% Si sheet and its magnetic properties. J Appl Phys 64(10):5367–5369

    CAS  Google Scholar 

  4. Kernick A, Lane D, Ogden J, Pavlovic D (1967) Development and application of low-noise 6.5% Si–Fe sheet. J Appl Phys 38(3):1087–1089

    CAS  Google Scholar 

  5. Kubota T (2005) Recent progress on non-oriented silicon steel. Steel Res Int 76(6):464–470

    CAS  Google Scholar 

  6. Lu X, Fang F, Zhang Y, Wang Y, Yuan G, Xu Y, Cao G, Misra R, Wang G (2017) Evolution of microstructure and texture in grain-oriented 6.5% Si steel processed by strip-casting. Mater Charact 126:125–134

    CAS  Google Scholar 

  7. He Y, Hilinski E, Li J (2015) Texture evolution of a non-oriented electrical steel cold rolled at directions different from the hot rolling direction. Metallurg Mater Trans A 46(11):5350–5365

    CAS  Google Scholar 

  8. Sha Y, Sun C, Zhang F, Patel D, Chen X, Kalidindi S, Zuo L (2014) Strong cube recrystallization texture in silicon steel by twin-roll casting process. Acta Mater 76:106–117

    CAS  Google Scholar 

  9. Li H, Liu Z (2015) Tensile properties of strip casting 6.5 wt% Si steel at elevated temperatures. Mater Sci Eng A 639:412–416

    CAS  Google Scholar 

  10. Lu X, Xu Y, Fang F, Zhang Y, Wang Y, Jiao H, Misra R, Cao G, Li C, Wang G (2015) Characterization of microstructure and texture in grain-oriented high silicon steel by strip casting. Acta Metallurg Sin (Engl Lett) 11:1394–1402

    Google Scholar 

  11. Cava R, Botta W, Kiminami C, Olzon-Dionysio M, Souza S, Jorge A Jr, Bolfarini C (2011) Ordered phases and texture in spray-formed Fe–5 wt% Si. J Alloy Compd 509:S260–S264

    CAS  Google Scholar 

  12. Stanciu C, Popa F, Chicinaş I, Isnard O (2015) Synthesis of the Fe–6.5% wt. Si alloy by mechanical alloying. Adv Eng Forum 13:109–113

    Google Scholar 

  13. Mo Y, Zhang Z, Pan H, Xie J (2016) Improved plasticity and cold-rolling workability of Fe–6.5wt%Si alloy by warm-rolling with gradually decreasing temperature. J Mater Sci Technol 32(5):477–484

    CAS  Google Scholar 

  14. Liu H, Li H, Li H, Gao F, Liu G, Luo Z, Zhang F, Chen S, Cao G, Liu Z, Wang G (2015) Effects of rolling temperature on microstructure, texture, formability and magnetic properties in strip casting Fe–6.5 wt% Si non-oriented electrical steel. J Magn Magn Mater 391:65–74

    CAS  Google Scholar 

  15. Xu H, Xu Y, Jiao H, Cheng S, Misra R, Li J (2018) Influence of grain size and texture prior to warm rolling on microstructure, texture and magnetic properties of Fe–6.5 wt% Si steel. J Magn Magn Mater 453:236–245

    CAS  Google Scholar 

  16. Yao Y, Sha Y, Liu J, Zhang F, Zuo L (2016) Texture and microstructure for magnetic properties of two-Stage cold-rolled Fe–6.5 wt pct Si thin sheets. Metallurg Mater Trans A 47(12):5771–5776

    CAS  Google Scholar 

  17. Machado R, Kasama A, Jorge A Jr, Kiminami C, Fo W, Bolfarini C (2007) Evolution of the texture of spray-formed Fe–6.5 wt.% Si–1.0 wt.% Al alloy during warm-rolling. Mater Sci Eng A 449:854–857

    Google Scholar 

  18. Xu H, Xu Y, He Y, Jiao H, Yue S, Li J (2020) Influence of hot rolling reduction rate on the microstructure, texture and magnetic properties of a strip-cast Fe–6.5 wt% Si grain-oriented electrical steel. J Magn Magn Mater 494:165755

    CAS  Google Scholar 

  19. Schneider J, Franke A, Stöcker A, Kawalla R (2016) Deformation structure and recrystallization of ferritic FeSi steels. Steel Res Int 87(8):1054–1064

    CAS  Google Scholar 

  20. Hong B, Han K, Kim J, Cho K (2005) Effect of hot band annealing on magnetic properties in 3% Si grain-oriented electrical steels. Steel Res Int 76(6):448–450

    CAS  Google Scholar 

  21. Wang Y, Zhang X, Zu G, Guan Y, Ji G, Misra R (2018) Effect of hot band annealing on microstructure, texture and magnetic properties of non-oriented electrical steel processed by twin-roll strip casting. J Magn Magn Mater 460:41–53

    CAS  Google Scholar 

  22. Qin J, Liu D, Yue Y, Zhao H, Lai C (2019) Effect of normalization on texture evolution of 0.2-mm-thick thin-gauge non-oriented electrical steels with strong η-fiber textures. J Iron Steel Res Int 26(11):1219–1227

    CAS  Google Scholar 

  23. Fang F, Zhang Y, Lu X, Wang Y, Lan M, Yuan G, Misra R, Wang G (2018) Abnormal growth of 100 grains and strong Cube texture in strip cast Fe–Si electrical steel. Scripta Mater 147:33–36

    CAS  Google Scholar 

  24. Jiao H, Xu Y, Xu H, Zhang Y, Xiong W, Misra R, Cao G, Li J, Jiang J (2018) Influence of hot deformation on texture and magnetic properties of strip cast non-oriented electrical steel. J Magn Magn Mater 462:205–215

    CAS  Google Scholar 

  25. Jiao H, Xu Y, Xiong W, Zhang Y, Cao G, Li C, Niu J, Misra R (2017) High-permeability and thin-gauge non-oriented electrical steel through twin-roll strip casting. Mater Des 136:23–33

    CAS  Google Scholar 

  26. An L, Wang Y, Song H, Wang G, Liu H (2019) Improving magnetic properties of non-oriented electrical steels by controlling grain size prior to cold rolling. J Magn Magn Mater 491:165636

    CAS  Google Scholar 

  27. Vanderschueren D, Kestens L, Van Houtte P, Aernoudt E, Dilewijns J, Meers U (1991) The effect of cross rolling on texture and magnetic properties of non oriented electrical steels. Texture Stress Microstruct 14:921–926

    Google Scholar 

  28. Kestens L, Jacobs S (2008) Texture control during the manufacturing of nonoriented electrical steels. Texture Stress Microstruct 2008:1–9

    Google Scholar 

  29. He Y, Hilinski E (2017) Skew rolling and its effect on the deformation textures of non-oriented electrical steels. J Mater Process Technol 242:182–195

    CAS  Google Scholar 

  30. Sanjari M, He Y, Hilinski E, Yue S, Kestens L (2017) Texture evolution during skew cold rolling and annealing of a non-oriented electrical steel containing 0.9 wt% silicon. J Mater Sci 52(6):3281–3300. https://doi.org/10.1007/s10853-016-0616-y

    Article  CAS  Google Scholar 

  31. Xu H, Xu Y, He Y, Cheng S, Jiao H, Yue S, Li J (2020) Two-stage warm cross rolling and its effect on the microstructure, texture and magnetic properties of an Fe–6.5 wt% Si non-oriented electrical steel. J Mater Sci 55(26):12525–12543. https://doi.org/10.1007/s10853-020-04861-7

    Article  CAS  Google Scholar 

  32. Mehdi M, He Y, Hilinski E, Edrisy A (2017) Effect of skin pass rolling reduction rate on the texture evolution of a non-oriented electrical steel after inclined cold rolling. J Magn Magn Mater 429:148–160

    CAS  Google Scholar 

  33. Li H, Liu H, Liu Y, Liu Z, Cao G, Luo Z, Zhang F, Chen S, Lyu L, Wang G (2014) Effects of warm temper rolling on microstructure, texture and magnetic properties of strip-casting 6.5wt% Si electrical steel. J Magn Magn Mater 370:6–12

    CAS  Google Scholar 

  34. Kurosaki Y, Shimazu T, Shiozaki M (1999) Effect of skin-pass rolling direction on magnetic properties of semiprocessed nonoriented electrical steel sheets. IEEE Trans Magn 35(5):3370–3372

    CAS  Google Scholar 

  35. Kijima H, Bay N (2008) Skin-pass rolling I—Studies on roughness transfer and elongation under pure normal loading. Int J Mach Tools Manuf 48(12):1313–1317

    Google Scholar 

  36. Park J, Han K (2012) Goss texture formation by strain induced boundary migration in semi-processed nonoriented electrical steels. Mater Sci Forum 715–716:837–842

    Google Scholar 

  37. Bennett T, Kalu P, Rollett A (2006) Stored energy driven abnormal grain growth in Fe-1Si, COM-2006 (Montreal), METSOC 217–227

  38. Bennett T, Kalu P, Rollett A (2011) Strain-induced selective growth in 1.5% temper-rolled Fe~1% Si. Microsc Microanal 17(3):362–367

    CAS  Google Scholar 

  39. Kestens L, Jonas J, Van Houtte P, Aernoudt E (1996) Orientation selective recrystallization of nonoriented electrical steels. Metallurg Mater Trans A 27(8):2347–2358

    Google Scholar 

  40. Takashima M, Komatsubara M, Morito N (1997) {001}<210> texture development by two-stage cold rolling method in non-oriented electrical steel. ISIJ Int 37(12):1263–1268

    CAS  Google Scholar 

  41. Sanjari M, He Y, Hilinski E, Yue S, Kestens L (2016) Development of the {113}<uvw> texture during the annealing of a skew cold rolled non-oriented electrical steel. Scripta Mater 124:179–183

    CAS  Google Scholar 

  42. Yan M, Qian H, Yang P, Mao W, Jian Q, Jin W (2011) Analysis of micro-texture during secondary recrystallization in a Hi-B electrical steel. J Mater Sci Technol 27(11):1065–1071

    CAS  Google Scholar 

  43. Kim J, Lee D, Koo Y (2014) The evolution of the Goss and Cube textures in electrical steel. Mater Lett 122:110–113

    CAS  Google Scholar 

  44. Mehdi M, He Y, Hilinski E, Kestens L, Edrisy A (2020) The evolution of cube ({001}<100>) texture in non-oriented electrical steel. Acta Mater 185:540–554

    CAS  Google Scholar 

  45. Ray R, Jonas J, Hook R (1994) Cold rolling and annealing textures in low carbon and extra low carbon steels. Int Mater Rev 39(4):129–172

    CAS  Google Scholar 

  46. Inagaki H, Suda T (1972) The development of rolling textures in low-carbon steels. Texture Stress Microstruct 1(2):129–140

    Google Scholar 

  47. Zhang N, Yang P, He C, Mao W (2016) Effect of {110}< 229> and {110}< 112> grains on texture evolution during cold rolling and annealing of electrical steel. ISIJ Int 56(8):1462–1469

    CAS  Google Scholar 

  48. von Schlippenbach U, Emren F, Lücke K (1986) Investigation of the development of the cold rolling texture in deep drawing steels by ODF-analysis. Acta Metall 34(7):1289–1301

    Google Scholar 

  49. Toth L, Jonas J, Daniel D, Ray R (1990) Development of ferrite rolling textures in low-and extra low-carbon steels. Metall Mater Trans A 21(11):2985–3000

    Google Scholar 

  50. Kurosaki Y, Shiozaki M, Higashine K, Sumimoto M (1999) Effect of oxide shape on magnetic properties of semiprocessed nonoriented electrical steel sheets. ISIJ Int 39(6):607–613

    CAS  Google Scholar 

  51. He Y, Mehdi M, Hilinski E, Edrisy A (2018) Through-process characterization of local anisotropy of non-oriented electrical steel using magnetic Barkhausen noise. J Magn Magn Mater 453:149–162

    CAS  Google Scholar 

  52. Cheong S, Weiland H (2007) Understanding a microstructure using GOS (grain orientation spread) and its application to recrystallization study of hot deformed Al–Cu–Mg alloys, Materials Science Forum 153–158.

  53. Titchener A, Bever M (1958) The stored energy of cold work. Prog Met Phys 7:247–338

    CAS  Google Scholar 

  54. von Neumann J (1952) Discussion of article by C. Smith. Metal Interfaces, Cleveland, Amer. Soc. Testing of Materials

  55. Mullins W (1956) Two-dimensional motion of idealized grain boundaries. J Appl Phys 27(8):900–904

    Google Scholar 

  56. Gobernado P, Petrov R, Kestens L (2012) Recrystallized {311}<136> orientation in ferrite steels. Scripta Mater 66(9):623–626

    CAS  Google Scholar 

  57. Sanjari M, Mehdi M, He Y, Hilinski E, Yue S, Kestens L, Edrisy A (2017) Tracking the evolution of annealing textures from individual deformed grains in a cross-rolled non-oriented electrical steel. Metall Mater Trans A 48(12):6013–6026

    CAS  Google Scholar 

  58. Zhang Z, Wang W, Zou Y, Baker I, Chen D, Liang Y (2015) Control of grain boundary character distribution and its effects on the deformation of Fe–6.5 wt.% Si. J Alloys Compd 639:40–44

    CAS  Google Scholar 

  59. Humphreys F, Hatherly M (2012) Recrystallization and related annealing phenomena. Elsevier, Amsterdam

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos.51674080, 51974085), and National Key R&D Program of China (2017YFB0304105). Y. H. acknowledges the financial support from Natural Resources Canada through the Program of Energy Research and Development. H.J.X. is grateful to the support from Chinese Scholarship Council (No. 201806080099). The authors are grateful to Jian Li and Renata Zavadil for assistance in EBSD characterization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunbo Xu or Youliang He.

Ethics declarations

Conflict of interest

There are no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Sophie Primig.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Xu, Y., He, Y. et al. Tracing the recrystallization of warm temper-rolled Fe–6.5 wt% Si non-oriented electrical steel using a quasi in situ EBSD technique. J Mater Sci 55, 17183–17203 (2020). https://doi.org/10.1007/s10853-020-05168-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05168-3

Navigation