Skip to main content
Log in

Evolutions of Microstructure and Crystallographic Texture in an Fe-1.2 wt.% Si Alloy After (A)Symmetric Warm Rolling and Annealing

  • Electrical Steels
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Rolling and annealing is a crucial technology to produce electrical steel sheets. This technology is not just aimed to control the geometry of steel sheets but more importantly to enhance the magnetic properties of the final products via appropriate microstructure and crystallographic texture. In this study, the evolution of microstructures and textures of an Fe-1.2 wt.% Si alloy through the entire processing route (from reheating, warm rolling to annealing) is monitored by electron back-scatter diffraction. Plastic flows of the material during conventional and asymmetric rolling are analyzed in detail based on geometric parameters of the rolling gaps. Deformation textures are accurately predicted by the full-constraint Taylor and advanced Lamel (ALAMEL) crystal plasticity models. The development of recrystallization textures is accounted for by the plastically stored energy in deformed crystals, which in turn is approximated by the plastically dissipated power (i.e., the Taylor factor) as predicted by the full constraint Taylor model. Although asymmetric warm rolling does not produce an improved texture or microstructure for electrical steels, the present study provides useful information on the evolution of the recrystallization microstructure and texture in steels with a complex strain history after asymmetric warm rolling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L. Kestens and S. Jacobs, Text. Stress Microstruct. 2008, 1 https://doi.org/10.1155/2008/173083 (2008).

    Article  CAS  Google Scholar 

  2. H. Pirgazi, R.H. Petrov, and L.A.I. Kestens, Steel Res. Int. https://doi.org/10.1002/srin.201400608 (2016).

    Article  Google Scholar 

  3. M.E. McHenry, Encyclopedia of Materials: Science and Technology (Second Edition), ed. K.H.J. Buschow, W.C. Robert, C.F. Merton, I. Bernard, J.K. Edward, M. Subhash, and V. Patrick (Elsevier, Oxford, 2001), p. 8584.

  4. B.D. Cullity and C.D. Graham, Introduction to Magnetic Materials (Wiley, New Jersey, 2011), p. 197.

    Google Scholar 

  5. P. Beckley, Electrical Steels for Rotating Machines (Institution of Engineering and Technology, London, 2002).

    Book  Google Scholar 

  6. T. Tomida, Mater. Trans. 44, 1096–1105 https://doi.org/10.2320/matertrans.44.1096 (2003).

    Article  CAS  Google Scholar 

  7. R.D. Doherty, D. Stojakovic, F.J.G. Landgraf, and S.R. Kalidindi, Mater. Sci. Forum 550, 497 https://doi.org/10.4028/www.scientific.net/MSF.550.497 (2007).

    Article  CAS  Google Scholar 

  8. L. Kestens, J.J. Jonas, P. Van Houtte, and E. Aernoudt, Text. Stress Microstruct. 26–27, 321 https://doi.org/10.1155/TSM.26-27.321 (1996).

    Article  Google Scholar 

  9. Y. Zhang, Y. Xu, H. Liu, C. Li, G. Cao, Z. Liu, and G. Wang, J. Magn. Magn. Mater. 324, 3328 https://doi.org/10.1016/j.jmmm.2012.05.046 (2012).

    Article  ADS  CAS  Google Scholar 

  10. H.J. Bunge, Texture Analysis in Materials Science—Mathematical Methods (Butterworth & Co, Berlin, 1982).

    Google Scholar 

  11. G.I. Taylor, J. Inst. Met. 62, 307 (1938).

    Google Scholar 

  12. P. Van Houtte, S. Li, M. Seefeldt, and L. Delannay, Int. J. Plast. 21, 589 https://doi.org/10.1016/j.ijplas.2004.04.011 (2005).

    Article  CAS  Google Scholar 

  13. L.S. Tóth and P. Van Houtte, Texture Microstruct 19, 229 https://doi.org/10.1155/tsm.19.229 (1992).

    Article  Google Scholar 

  14. P. Van Houtte, MTM-FHM Software User Manual, Ver. 2 (1995).

  15. G.E. Dieter and D. Bacon, Mechanical Metallurgy (McGraw-Hill, New York, 1988), pp593–596.

    Google Scholar 

  16. D.N. Lee, Mater. Sci. Forum 449–452, 1 https://doi.org/10.4028/www.scientific.net/MSF.449-452.1 (2004).

    Article  Google Scholar 

  17. S.-B. Kang, B.-K. Min, H.-W. Kim, D. Wilkinson, and J. Kang, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 36, 3141 https://doi.org/10.1007/s11661-005-0085-4 (2005).

    Article  ADS  Google Scholar 

  18. J. Sidor, A. Miroux, R. Petrov, and L. Kestens, Acta Mater. 56, 2495 https://doi.org/10.1016/j.actamat.2008.01.042 (2008).

    Article  ADS  CAS  Google Scholar 

  19. J. Gil Sevillano, P. van Houtte, and E. Aernoudt, Prog. Mater. Sci. 25, 69 https://doi.org/10.1016/0079-6425(80)90001-8 (1980).

    Article  CAS  Google Scholar 

  20. A. Rollett, G.S. Rohrer, and J. Humphreys, Recrystallization and Related Annealing Phenomena, (2017), p. 1.

  21. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett, Mater. Sci. Eng. A 238, 219 https://doi.org/10.1016/S0921-5093(97)00424-3 (1997).

    Article  Google Scholar 

  22. B. Hutchinson, Mater. Sci. Forum 558–559, 13 https://doi.org/10.4028/www.scientific.net/MSF.558-559.13 (2007).

    Article  Google Scholar 

  23. B. Hutchinson, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 357, 1471 https://doi.org/10.1098/rsta.1999.0385 (1999).

    Article  ADS  CAS  Google Scholar 

  24. N. Rajmohan, Y. Hayakawa, J.A. Szpunar, and J.H. Root, Acta Mater. 45, 2485 https://doi.org/10.1016/S1359-6454(96)00371-0 (1997).

    Article  ADS  CAS  Google Scholar 

  25. P. Van Houtte, A.K. Kanjarla, A. Van Bael, M. Seefeldt, and L. Delannay, Eur. J. Mech. A. Solids 25, 634 https://doi.org/10.1016/j.euromechsol.2006.05.003 (2006).

    Article  MathSciNet  Google Scholar 

  26. G. Gottstein and L.S. Shvindlerman, Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications, Second Edition, (2009), p. 1.

  27. L. Kestens and J.J. Jonas, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 27, 155 https://doi.org/10.1007/BF02647756 (1996).

    Article  ADS  Google Scholar 

  28. J.J. Sidor, R.H. Petrov, and L.A.I. Kestens, Acta Mater. 59, 5735 https://doi.org/10.1016/j.actamat.2011.05.050 (2011).

    Article  ADS  CAS  Google Scholar 

  29. L.A.I. Kestens and H. Pirgazi, Mater. Sci. Tech. Ser. 32, 1303 https://doi.org/10.1080/02670836.2016.1231746 (2016).

    Article  CAS  Google Scholar 

  30. M. Atake, M. Barnett, B. Hutchinson, and K. Ushioda, Acta Mater. 96, 410 https://doi.org/10.1016/j.actamat.2015.05.018 (2015).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the RFCS-Asylectro project (RFSR-CT-2008-00025). Authors express their gratitude for the support from the Belgium Federal Science Policy Office for the Inter-university Attraction Poles (IAP) program via the project P7-21 INTEMATE. T.N.M. thanks Dr. J.J. Sidor (Eötvös Lorand University-Hungary) for his introduction to crystal plasticity and asymmetric rolling of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuan Nguyen-Minh.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen-Minh, T., Petrov, R.H., Cicalè, S. et al. Evolutions of Microstructure and Crystallographic Texture in an Fe-1.2 wt.% Si Alloy After (A)Symmetric Warm Rolling and Annealing. JOM 76, 1015–1030 (2024). https://doi.org/10.1007/s11837-023-06330-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06330-3

Navigation