Skip to main content
Log in

Effect of iron alloying in evolution of nanostructure and microstructural stability in nickel

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Nanocrystalline materials show many interesting properties such as high strength and hardness due to nanosized grains and high density of interfaces. In this context, the present work reports the effect of Fe (iron) addition in Ni (nickel) on nanostructure retention during the annealing of Ni-Fe alloy (with 0, 18.5, 28.5 and 43 wt% Fe) at 450 °C for 16 h. Furthermore, effect of annealing on the deformation mechanism was investigated. The integral breadth method revealed the decrease in grain size with increase in wt% Fe in Ni. The strain rate sensitivity exponent which is a signature of operating deformation mechanism showed a higher value (0.10803) in case of Ni-18.5 wt% Fe during nanoindentation. However, Ni-0 wt% Fe, Ni-28.5 wt% Fe and Ni-43 wt% Fe were characterized by a relatively low strain rate sensitivity exponent (between 0.02069 and 0.10803). Results indicated the presence of Hall-Petch relationship up to 18.5 wt% Fe and inverse Hall-Petch relationship above 18.5 wt% Fe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Meyers, A. Mishra, and D. J. Benson, Prog. Mater. Sci. 51, 427 (2006).

    Article  Google Scholar 

  2. F. Czerwinski, J. A. Szpunar, and U. Erb, J. Mater. Sci-Materi. El. 11, 243 (2000).

    Article  Google Scholar 

  3. C. Suryanarayana and C. C. Koch, Hyperfine Interact. 130, 5 (2000).

    Article  Google Scholar 

  4. C. Suryanarayana, Int. Mater. Rev. 40, 41 (1995).

    Article  Google Scholar 

  5. H. Li, F. Jiang, S. Ni, L. Li, G. Sha, X. Liao, S. P. Ringer, H. Choo, P. K. Liaw, and A. Misra, Scripta Mater. 65, 1 (2011).

    Article  Google Scholar 

  6. R. A.-Karim, Y. Reda, M. Muhammed, S. E. Raghy, M. Shoeib, and H. Ahmed, J. Nanomater. 2011, 7 (2011).

    Article  Google Scholar 

  7. C. Cheung, F. Djuanda, U. Erb, and G. Palumbo, Nanost. Mater. 5, 513 (1995).

    Article  Google Scholar 

  8. F. Ebrahimi and H. Q. Li, Rev. Adv. Mater. Sci. 5, 134 (2003).

    Google Scholar 

  9. A. H. Chokshi, A. Rosen, J. Karch, and H. Gleiter, Scripta Metall. Mater 23, 1679 (1989).

    Article  Google Scholar 

  10. D. Clark, D. Wood, and U. Erb, Nanostruct. Mater. 9, 755 (1997).

    Article  Google Scholar 

  11. T. Volpp, E. Göring, W. M. Kuschke, and E. Arzt, Nanostruct. Mater. 8, 855 (1997).

    Article  Google Scholar 

  12. E. O. Hall, Proc. Phys. Soc. B 64, 747 (1951).

    Article  Google Scholar 

  13. H. Gleiter, Prog. Mater. Sci. 33, 223 (1989).

    Article  Google Scholar 

  14. J. L. McCrea, G. Palumbo, G. D. Hibbard, and U. Erb, Rev. Adv. Mater. Sci. 5, 252 (2003).

    Google Scholar 

  15. U. Erb, Nanostruct. Mater. 6, 533 (1995).

    Article  Google Scholar 

  16. A. M. El-Sherik and U. Erb, J. Mater. Sci. 30, 5743 (1995).

    Article  Google Scholar 

  17. B. N. Mondal, A. Basumallick, and P. P. Chattopadhyay, J. Magn. Magn. Mater. 309, 290 (2007).

    Article  Google Scholar 

  18. Z. Zhang, F. Zhou, and E. J. Lavernia, Metall. Mater. Trans. A 34, 1349 (2003).

    Article  Google Scholar 

  19. Y. M. Yeh, G. C. Tu, and T. H. Fang, J. Alloy. Compd. 372, 224 (2004).

    Article  Google Scholar 

  20. S. Chakraborty, M. Settem, and S. B. Sant, Materials Express 3, 99 (2013).

    Article  Google Scholar 

  21. H. Li and F. Ebrahimi, Mater. Sci. Eng. A 347, 93 (2003).

    Article  Google Scholar 

  22. L. H. Qian, S. C. Wang, Y. H. Zhao, and K. Lu, Acta Mater. 50, 3425 (2002).

    Article  Google Scholar 

  23. G. Palumbo, S. J. Thorpe, and K. T. Aust, Scripta Metall. Mater. 24, 1347 (1990).

    Article  Google Scholar 

  24. W. C. Oliver and G. M. Pharr, J. Mater Res. 19, 3 (2004).

    Article  Google Scholar 

  25. C. D. Gu, J. S. Lian, Q. Jiang, and W. T. Zheng, J. Phys. D Appl. Phys. 40, 7440 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alok Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desai, J.A., Kumar, A. Effect of iron alloying in evolution of nanostructure and microstructural stability in nickel. Met. Mater. Int. 22, 451–458 (2016). https://doi.org/10.1007/s12540-016-5644-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-016-5644-2

Keywords

Navigation