Skip to main content
Log in

Functionally Graded Coating of Ni-Fe Fabricated by Pulse Electrodeposition

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Functionally graded (FG) coatings of Ni-Fe were deposited on mild steel substrate by applying pulse electrodeposition. First, the Ni-Fe FG coatings at constant frequency by gradually reducing the pulse duty cycle in eight steps (D coatings). In these coatings, the amount of Fe was gradually decreased from the substrate/coating interface toward the top surface. Next, the frequency was changed continuously at constant duty cycle (F Coatings), where partial changes were observed in the chemical composition of the coatings. In order to assess corrosion and the tribological behavior of the coatings, potentiodynamic and pin-on-disk tests were conducted. The corrosion tests showed that the corrosion resistance of the D coatings is higher than the F coatings. In addition, increasing the pulse frequency decreased the corrosion resistance of the D coatings. Finally, the wear test results showed that reduction of frequency improves the wear resistance of the D coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.A. Switzer, M.J. Shane, and R.J. Phillips, Electrodeposited Ceramic Superlattices, Science, 1990, 247(4941), p 444–446

    Article  Google Scholar 

  2. A. Marlot, P. Kern, and D. Landolt, Pulse Plating of Ni-Mo Alloys from Ni-rich Electrolytes, Electrochim. Acta, 2002, 48(1), p 29–36

    Article  Google Scholar 

  3. M. Alper, P. Aplin, K. Attenborough, D. Dingley, R. Hart, S. Lane, D. Lashmore, and W. Schwarzacher, Growth and Characterization of Electrodeposited Cu/Cu-Ni-Co Alloy Superlattices, J. Magn. Magn. Mater., 1993, 126(1), p 8–11

    Article  Google Scholar 

  4. A. Misra, M. Verdier, H. Kung, J. Embury, and J. Hirth, Deformation Mechanism Maps for Polycrystalline Metallic Multiplayers, Scr. Mater., 1999, 41(9), p 973–979

    Article  Google Scholar 

  5. J. Koehler, Attempt to Design a Strong Solid, Phys. Rev. B, 1970, 2(2), p 547

    Article  Google Scholar 

  6. L. Nasi, C. Bocchi, A. Catellani, F. Germini, J. Morrod, K. Prior, and G. Calestani, Study of Structural Transition from Metastable Zinc Blende to Rocksalt Crystal in Molecular Beam Epitaxy MgS/ZnSe/GaAs Multilayer System, Appl. Phys. Lett., 2007, 91(11), p 111908

    Article  Google Scholar 

  7. S. Wu, L. Cheng, L. Zhang, and Y. Xu, Oxidation Behavior of 2D C/SiC with a Multi-Layer CVD SiC Coating, Surf. Coat. Technol., 2006, 200(14), p 4489–4492

    Article  Google Scholar 

  8. Y. Kok, P.E. Hovsepian, Q. Luo, D. Lewis, J. Wen, and I. Petrov, Influence of the Bias Voltage on the Structure and the Tribological Performance of Nanoscale Multilayer C/Cr PVD Coatings, Thin Solid Films, 2005, 475(1), p 219–226

    Article  Google Scholar 

  9. H. Alimadadi, M. Ahmadi, M. Aliofkhazraei, and S.R. Younesi, Corrosion Properties of Electrodeposited Nanocrystalline and Amorphous Patterned Ni-W Alloy, Mater. Des., 2009, 30(4), p 1356–1361

    Article  Google Scholar 

  10. M. Aliofkhazraei, S. Ahangarani, and A.S. Rouhaghdam, Effect of the Duty Cycle of Pulsed Current on Nanocomposite Layers Formed by Pulsed Electrodeposition, Rare Met., 2010, 29(2), p 209–213

    Article  Google Scholar 

  11. M.R. Etminanfar and M. Heydarzadeh, Sohi, Corrosion Resistance of Multilayer Coatings of Nanolayered Cr/Ni Electrodeposited from Cr(III)-Ni(II) Bath, Thin Solid Films, 2012, 520(16), p 5322–5327

    Article  Google Scholar 

  12. C.A. Huang, C.Y. Chen, C.C. Hsu, and C.S. Lin, Characterization of Cr-Ni Multilayers Electroplated from a Chromium(III)-Nickel(II) Bath Using Pulse Current, Scr. Mater., 2007, 57(1), p 61–64

    Article  Google Scholar 

  13. K. Leistner, S. Fähler, H. Schlörb, and L. Schultz, Preparation and Characterization of Electrodeposited Fe/Pt Multilayers, Electrochem. Commun., 2006, 8(6), p 916–920

    Article  Google Scholar 

  14. C. Panagopoulos, V. Papachristos, and L. Christoffersen, Lubricated Sliding Wear Behaviour of Ni-P-W Multilayered Alloy Coatings Produced by Pulse Plating, Thin Solid Films, 2000, 366(1), p 155–163

    Article  Google Scholar 

  15. F. Ebrahimi and H. Li, Grain Growth in Electrodeposited Nanocrystalline fcc Ni-Fe Alloys, Scr. Mater., 2006, 55(3), p 263–266

    Article  Google Scholar 

  16. P. Egberts, P. Brodersen, and G.D. Hibbard, Mesoscale Structure in Electrodeposited Nanocrystalline Ni-Fe Alloys, Mater. Sci. Eng. A, 2006, 441(1-2), p 336–341

    Article  Google Scholar 

  17. F. Czerwinski, H. Li, M. Megret, J. Szpunar, D. Clark, and U. Erb, The Evolution of Texture and Grain Size During Annealing of Nanocrystalline Ni-45% Fe Electrodeposits, Scr. Mater., 1997, 37(12), p 1967–1972

    Article  Google Scholar 

  18. J. McCrea, G. Palumbo, G. Hibbard, and U. Erb, Properties and Applications for Electrodeposited Nanocrystalline Fe-Ni Alloys, Rev. Adv. Mater. Sci., 2003, 5(3), p 252–258

    Google Scholar 

  19. C.-W. Su, F.-J. He, H. Ju, Y.-B. Zhang, and E.-L. Wang, Electrodeposition of Ni, Fe and Ni-Fe Alloys on a 316 Stainless Steel Surface in a Fluorborate Bath, Electrochim. Acta, 2009, 54(26), p 6257–6263

    Article  Google Scholar 

  20. V.C. Kieling, Parameters Influencing the Electrodeposition of Ni-Fe Alloys, Surf. Coat. Technol., 1997, 96(2), p 135–139

    Article  Google Scholar 

  21. A. Sanaty-Zadeh, K. Raeissi, and A. Saidi, Properties of Nanocrystalline Iron-Nickel Alloys Fabricated by Galvano-Static Electrodeposition, J. Alloys Compd., 2009, 485(1-2), p 402–407

    Article  Google Scholar 

  22. E. García-Lecina, I. García-Urrutia, J. Díez, M. Salvo, F. Smeacetto, G. Gautier, R. Seddon, and R. Martin, Electrochemical Preparation and Characterization of Ni/SiC Compositionally Graded Multilayered Coatings, Electrochim. Acta, 2009, 54(9), p 2556–2562

    Article  Google Scholar 

  23. Y.S. Dong, P.H. Lin, and H.X. Wang, Electroplating Preparation of Ni-Al2O3 Graded Composite Coatings Using a Rotating Cathode, Surf. Coat. Technol., 2006, 200(11), p 3633–3636

    Article  Google Scholar 

  24. K.-M. Yin, S.-L. Jan, and C.-C. Lee, Current Pulse with Reverse Plating of Nickel-Iron Alloys in a Sulphate Bath, Surf. Coat. Technol., 1997, 88(1), p 219–225

    Article  Google Scholar 

  25. J.C. Puippe and N. Ibl, Influence of Charge and Discharge of Electric Double Layer in Pulse Plating, J. Appl. Electrochem., 1980, 10(6), p 775–784

    Article  Google Scholar 

  26. M. Haciismailoglu and M. Alper, Effect of Electrolyte pH and Cu Concentration on Microstructure of Electrodeposited Ni-Cu Alloy Films, Surf. Coat. Technol., 2011, 206(6), p 1430–1438

    Article  Google Scholar 

  27. A. Sharma, S. Bhattacharya, S. Das, and K. Das, A Study on the Effect of Pulse Electrodeposition Parameters on the Morphology of Pure Tin Coatings, Metall. Mater. Trans. A, 2014, 45(10), p 4610–4622

    Article  Google Scholar 

  28. L. Besra, T. Uchikoshi, T. Suzuki, and Y. Sakka, Pulsed-DC Electrophoretic Deposition (EPD) of Aqueous Alumina Suspension for Controlling Bubble Incorporation and Deposit Microstructure, Key Eng. Mater., 2009, 412, p 39–44

    Article  Google Scholar 

  29. M.S. Chandrasekar and M. Pushpavanam, Pulse and Pulse Reverse Plating—Conceptual, Advantages and Applications, Electrochim. Acta, 2008, 53(8), p 3313–3322

    Article  Google Scholar 

  30. S. Tao and D.Y. Li, Tribological, Mechanical and Electrochemical Properties of Nanocrystalline Copper Deposits Produced by Pulse Electrodeposition, Nanotechnology, 2006, 17(1), p 65–78

    Article  Google Scholar 

  31. C.-K. Chung and W. Chang, Effect of Pulse Frequency and Current Density on Anomalous Composition and Nanomechanical Property of Electrodeposited Ni-Co Films, Thin Solid Films, 2009, 517(17), p 4800–4804

    Article  Google Scholar 

  32. I. Ovid’ko, Deformation and Diffusion Modes in Nanocrystalline Materials, Int. Mater. Rev., 2005, 50(2), p 65–82

    Article  Google Scholar 

  33. L. Wang, J. Zhang, Z. Zeng, Y. Lin, L. Hu, and Q. Xue, Fabrication of a Nanocrystalline Ni-Co/CoO Functionally Graded Layer with Excellent Electrochemical Corrosion and Tribological Performance, Nanotechnology, 2006, 17(18), p 4614–4623

    Article  Google Scholar 

  34. R. Mishra, B. Basu, and R. Balasubramaniam, Effect of Grain Size on the Tribological Behavior of Nanocrystalline Nickel, Mater. Sci. Eng. A, 2004, 373(1-2), p 370–373

    Article  Google Scholar 

  35. D. Jeong, F. Gonzalez, G. Palumbo, K. Aust, and U. Erb, The Effect of Grain Size on the Wear Properties of Electrodeposited Nanocrystalline Nickel Coatings, Scr. Mater., 2001, 44(3), p 493–499

    Article  Google Scholar 

  36. T. Hanlon, A. Chokshi, M. Manoharan, and S. Suresh, Effects of Grain Refinement and Strength on Friction and Damage Evolution Under Repeated Sliding Contact in Nanostructured Metals, Int. J. Fatigue, 2005, 27(10-12), p 1159–1163

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Aliofkhazraei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torabinejad, V., Aliofkhazraei, M., Sabour Rouhaghdam, A. et al. Functionally Graded Coating of Ni-Fe Fabricated by Pulse Electrodeposition. J. of Materi Eng and Perform 25, 5494–5501 (2016). https://doi.org/10.1007/s11665-016-2376-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2376-x

Keywords

Navigation