Skip to main content
Log in

Effect of amorphous carbon on the tensile behavior of polyacrylonitrile (PAN)-based carbon fibers

  • Polymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effects of the microstructure evolution of amorphous carbon on the tensile behavior of polyacrylonitrile (PAN)-based carbon fibers were investigated. The microstructure as a function of heat treatment temperature was characterized by means of XRD, HRTEM and Raman spectra. It is found that the amorphous carbon content decreases with increasing heat treatment temperature and that the densities of the carbon fibers increase is due to the removal of the impurity elements and the shrinking of the graphite planes. The amorphous carbon parallel to the graphite planes transforms into graphite planes and stacks on the graphite crystallites, leading to the increase in the graphite crystallite thickness. And the graphite crystallite length is increased through the amorphous-to-crystallite transition which occurs at the edges of graphite planes and the coalescence between two adjacent graphite crystallites. It is found that the tensile behavior of PAN-based carbon fibers mainly depends on the microstructure evolution of amorphous carbon. The reactions between sp2 carbon clusters and graphite planes improve the cross-linking among graphite crystallites, which has a positive effect on the tensile strength of the carbon fibers. However, a large number of structural defects and residual stresses, introduced by the rearrangement of graphite planes, are the main reasons for the degradation of the tensile strength. The tensile strains of the carbon fibers decrease and the tensile modulus increase with the decrease in the amorphous carbon content, which are mainly due to the amorphous-to-crystallite transition in the skin region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Okuda H, Young RJ, Tanaka F, Watanabe J, Okabe T (2016) Tensile failure phenomena in carbon fibres. Carbon 107:474–481

    Article  CAS  Google Scholar 

  2. Naito K, Yang JM, Tanaka Y, Kagawa Y (2012) The effect of gauge length on tensile strength and Weibull modulus of polyacrylonitrile (PAN)- and pitch-based carbon fibers. J Mater Sci 47:632–642. https://doi.org/10.1007/s10853-011-5832-x

    Article  CAS  Google Scholar 

  3. Wu S, Liu YQ, Ge YC, Ran LP, Peng K, Yi MZ (2016) Surface structures of PAN-based carbon fibers and their influences on the interface formation and mechanical properties of carbon-carbon composites. Compos A 90:480–488

    Article  CAS  Google Scholar 

  4. Park SJ, Cho MS (2000) Thermal stability of carbon-MoSi2-carbon composites by thermogravimetric analysis. J Mater Sci 35(14):3525–3527. https://doi.org/10.1023/A:1004849110311

    Article  CAS  Google Scholar 

  5. Ly HQ, Taylor R, Day RJ (2001) Carbon fibre-reinforced CMCs by PCS infiltration. J Mater Sci 36(16):4027–4035. https://doi.org/10.1023/A:1017990709819

    Article  CAS  Google Scholar 

  6. Penev ES, Artyukhov VI, Yakobson BI (2015) Basic structural units in carbon fibers: Atomistic models and tensile behavior. Carbon 85:72–78

    Article  CAS  Google Scholar 

  7. Li DH, Lu CX, Wang LN, Du SJ, Yang Y (2017) A reconsideration of the relationship between structural features and mechanical properties of carbon fibers. Mater Sci Eng A 685:65–70

    Article  CAS  Google Scholar 

  8. Li DF, Wang HJ, Wang XK (2007) Effect of microstructure on the modulus of PAN-based carbon fibers during high temperature treatment and hot stretching graphitization. J Mater Sci 42(12):4642–4649. https://doi.org/10.1007/s10853-006-0519-4

    Article  CAS  Google Scholar 

  9. Wu S, Yi MZ, Ge YC, Ran LP, Peng K (2017) Effect of carbon fiber reinforcement on the tribological performance and behavior of aircraft carbon brake discs. Carbon 117:279–292

    Article  CAS  Google Scholar 

  10. Chen TF, Gong WP, Liu GS (2006) Effects of fiber-types on braking behavior of carbon–carbon composites. Mater Sci Eng A 441(1):73–78

    Article  CAS  Google Scholar 

  11. Swolfs Y, Shi J, Meerten Y, Hine P, Ward I, Verpoest I, Gorbatikh L (2015) The importance of bonding in intralayer carbon fibre/self-reinforced polypropylene hybrid composites. Compos A 76:299–308

    Article  CAS  Google Scholar 

  12. Trinquecoste M, Carlier JL, Derré A, Delhaès P, Chadeyron P (1996) High temperature thermal and mechanical properties of high tensile carbon single filaments. Carbon 34(7):923–929

    Article  CAS  Google Scholar 

  13. Saudér C, Lamon J, Paillér R (2004) The tensile behavior of carbon fibers at high temperatures up to 2400 °C. Carbon 42(4):715–725

    Article  CAS  Google Scholar 

  14. Zhou GH, Byun JH, Lee SB et al (2014) Nano structural analysis on stiffening phenomena of PAN-based carbon fibers during tensile deformation. Carbon 76:232–239

    Article  CAS  Google Scholar 

  15. Guigon M, Oberlin A, Desarmot G (1984) Microtexture and structure of some high tensile strength, PAN-base carbon fibres. Fibre Sci Technol 20(3):177–198

    Article  CAS  Google Scholar 

  16. Liu FJ, Wang HJ, Xue LB, Fan LD, Zhu ZP (2008) Effect of microstructure on the mechanical properties of PAN-based carbon fibers during high-temperature graphitization. J Mater Sci 43(12):4316–4322. https://doi.org/10.1007/s10853-008-2633-y

    Article  CAS  Google Scholar 

  17. Nunna S, Naebe M, Hameed N, Fox BL, Creighton C (2017) Evolution of radial heterogeneity in polyacrylonitrile fibres during thermal stabilization: an overview. Polym Degrad Stab 136:20–30

    Article  CAS  Google Scholar 

  18. Huang Y, Young RJ (1995) Effect of fibre microstructure upon the modulus of PAN- and pitch-based carbon fibres. Carbon 33(2):97–107

    Article  CAS  Google Scholar 

  19. Zhou GH, Liu YQ, He L, Guo QG, Ye HQ (2011) Microstructure difference between core and skin of T700 carbon fibers in heat-treated carbon/carbon composites. Carbon 49:2883–2892

    Article  CAS  Google Scholar 

  20. Johnson DJ (1987) Structure-property relationships in carbon fibres. J Phys D Appl Phys 20:286–291

    Article  CAS  Google Scholar 

  21. Rennhofer H, Loidl D, Puchegger S, Peterlik H (2010) Structural development of PAN-based carbon fibers studied by in situ X-ray scattering at high temperatures under load. Carbon 48:964–971

    Article  CAS  Google Scholar 

  22. Fischer L, Ruland W (1980) The influence of graphitization on the mechanical properties of carbon fibers. Colloid Polym Sci 258:917–922

    Article  CAS  Google Scholar 

  23. Northolt MG, Veldhuizen LH, Jansen H (1991) Tensile deformation of carbon fibers and the relationship with the modulus for shear between the basal planes. Carbon 29:1267–1279

    Article  CAS  Google Scholar 

  24. Shioya M, Hayakawa E, Takaku A (1996) Non-hookean stress-strain response and changes in crystallite orientation of carbon fibres. J Mater Sci 31:4521–4532. https://doi.org/10.1007/BF00366347

    Article  CAS  Google Scholar 

  25. Hong SK, Shioya M, Takaku A (1999) Kinetic studies on hot-stretching of polyacrylonitrile-based carbon fibres by using internal resistance heating. Part II: changes in structure and mechanical properties. J Mater Sci 34(14):3307–3314. https://doi.org/10.1023/A:1004664611696

    Article  Google Scholar 

  26. Qin XY, Lu YG, Xiao H, Wen Y, Tu T (2012) A comparison of the effect of graphitization on microstructures and properties of polyacrylonitrile and mesophase pitch-based carbon fibers. Carbon 50(12):4459–4469

    Article  CAS  Google Scholar 

  27. Tanaka F, Okabe T, Okuda H, Ise Kinloch IA, Mori T, Young RJ (2013) The effect of nanostructure upon the deformation micromechanics of carbon fibres. Carbon 52:372–378

    Article  CAS  Google Scholar 

  28. Zhong YJ, Bian WF, Wang ML (2016) The effect of nanostructure on the tensile modulus of carbon fibers. J Mater Sci 51:3564–3573. https://doi.org/10.1007/s10853-015-9676-7

    Article  CAS  Google Scholar 

  29. Tanaka F, Okabe T, Okuda H, Kinloch IA, Young RJ (2014) Factors controlling the strength of carbon fibres in tension. Compos A 57:88–94

    Article  CAS  Google Scholar 

  30. Tanaka F, Okabe T, Okuda H, Kinloch IA, Young RJ (2013) The effect of nanostructure upon the compressive strength of carbon fibres. J Mater Sci 48:2104–2110. https://doi.org/10.1007/s10853-012-6984-z

    Article  CAS  Google Scholar 

  31. Jawhari T, Roid A, Casado J (1995) Raman spectroscopic characterization of some commercially available carbon black materials. Carbon 33:1561–1565

    Article  CAS  Google Scholar 

  32. Sadezky A, Muckenhuber H, Grothe H, Niesner R, Pöschl U (2005) Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon 43:1731–1742

    Article  CAS  Google Scholar 

  33. Dippel B, Jander H, Heintzenberg J (1999) NIR FT Raman spectroscopic study of flame soot. Chem Chem Phys 1:4707–4712

    Article  CAS  Google Scholar 

  34. Okuda H, Young RJ, Wolverson D, Tanaka F, Yamamoto G, Okabe T (2018) Investigating nanostructures in carbon fibres using Raman spectroscopy. Carbon 130:178–184

    Article  CAS  Google Scholar 

  35. Hu HL, Mu XQ (1988) X-ray diffraction technology. Textile Industry Press, Beijing

    Google Scholar 

  36. Naito K, Tanaka Y, Yang JM, Kagawa Y (2008) Tensile properties of ultrahigh strength PAN-based, ultrahigh modulus pitch-based and high ductility pitch-based carbon fibers. Carbon 46:189–195

    Article  CAS  Google Scholar 

  37. Kim M, Jang D, Tejima S, Cruz-Silva R, Joh H, Kim HC, Lee S, Endo M (2016) Strengthened PAN-based carbon fibers obtained by slow heating rate carbonization. Sci Rep 6:22988

    Article  CAS  Google Scholar 

  38. Rahaman MSA, Ismail AF, Mustafa A (2007) A review of heat treatment on polyacrylonitrile fiber. Polym Degrad Stab 92:1421–1432

    Article  CAS  Google Scholar 

  39. Gao AJ, Zhao C, Luo S, Tong YJ, Xu LH (2011) Correlation between graphite crystallite distribution morphology and the mechanical properties of carbon fiber during heat treatment. Mater Lett 65:3444–3446

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Basic Research Program of China (ZB 414220201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maozhong Yi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Hu, G., He, H. et al. Effect of amorphous carbon on the tensile behavior of polyacrylonitrile (PAN)-based carbon fibers. J Mater Sci 54, 8800–8813 (2019). https://doi.org/10.1007/s10853-018-03256-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-03256-z

Navigation