Skip to main content
Log in

Non-hookean stress-strain response and changes in crystallite orientation of carbon fibres

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The non-hookean stress-strain response of carbon fibres was investigated in relation to changes in crystallite orientation with tensile stress. Various one-dimensional array models and a mosaic model were examined. Amongst these models, only the mosaic model in which the stress of the crystallites can be transmitted in both the transverse and the axial directions showed any quantitative agreement with the measured increases in the tensile modulus and the crystallite orientation with tensile stress. This suggests that deformation of the crystallites is constrained with increasing tensile stress. It was also found that the ratio of the tensile stress of the fibre to that of the crystallites is close to the crystallite volume fraction rather than the ratio of the fibre density to the crystallite density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. J. Curtis, J. M. Milne and W. N. Reynolds, Nature 220 (1968) 1024.

    Article  Google Scholar 

  2. C. P. Beetz, Fibre Sci. Technol. 16 (1982) 219.

    Article  CAS  Google Scholar 

  3. C. P. Beetz and G. W. Budd, Rev. Sci. Instrum. 54 (1983) 1222.

    Article  CAS  Google Scholar 

  4. I. M. Kowalski, Eight Conference, “Composite Materials: Testing and Design” ASTM STP 972 (American Society for Testing and Materials, Philadelphia, PA 1988) p. 205.

    Google Scholar 

  5. Y. Nukushina, J. Matsui and M. Itoh, J. Jpn Soc. Composite Mater. 15 (1989) 210.

    Article  Google Scholar 

  6. M. G. Northolt, L. H. Veldhuizen and H. Jansen, Carbon 29 (1991) 1267.

    Article  CAS  Google Scholar 

  7. W. H. M. Van Dreumel and J. L. M. Kamp, J. Composite Mater. 11 (1977) 461.

    Article  Google Scholar 

  8. T. Ishikawa, M. Matsushima and Y. Hayashi, J. Mater. Sci. 20 (1985) 4075.

    Article  CAS  Google Scholar 

  9. H. Vangerko and A. J. Barker, Composites 16 (1985) 19.

    Article  CAS  Google Scholar 

  10. J. D. H. Hughes, Carbon 24 (1986) 551.

    Article  CAS  Google Scholar 

  11. M. M. Stevanovic and T. B. Stecenko, J. Serb. Chem. Soc. 57 (1992) 785.

    CAS  Google Scholar 

  12. E. Hayakawa, M. Shioya and A. Takaku, Adv. Composite Mater. 4 (1994) 33.

    Article  Google Scholar 

  13. T. B. Stecenko and M. M. Stevanovic, J. Composite Mater. 24 (1990) 1152.

    Article  CAS  Google Scholar 

  14. P., Arsenovic, H., Jiang, R. K., Eby, W. W., Adams and J. M. Lin, in Proceedings Carbon 88, University of Newcastle upon Tyne, UK, edited by B. McEnaney and T. J. Mays (Institute of Physics, 1988) p. 485.

    Google Scholar 

  15. A. Takaku and M. Shioya, J. Mater. Sci. 25 (1990) 4873.

    Article  CAS  Google Scholar 

  16. M. Shioya and A. Takaku, Carbon 32 (1994) 615.

    Article  CAS  Google Scholar 

  17. W. Ruland, Appl. Polym. Symposia 9 (1969) 293.

    Google Scholar 

  18. M. Stewart and M. Feughelman, J. Mater. Sci. 8 (1973) 1119.

    Article  CAS  Google Scholar 

  19. O. L. Blakslee, D. G. Proctor, E. J. Seldin, G. B. Spence and T. Weng, J. Appl. Phys. 41 (1970) 3373.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shioya, M., Hayakawa, E. & Takaku, A. Non-hookean stress-strain response and changes in crystallite orientation of carbon fibres. JOURNAL OF MATERIALS SCIENCE 31, 4521–4532 (1996). https://doi.org/10.1007/BF00366347

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00366347

Keywords

Navigation