Skip to main content
Log in

Effect of microstructure on the mechanical properties of PAN-based carbon fibers during high-temperature graphitization

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The change of microstructure of PAN-based carbon fibers has been studied as a function of heat-treatment temperature (1,800–2,800 °C, stretching 0%) by Raman spectroscopy and X-ray diffraction. With increasing heat-treatment temperature, both the crystallite size (La, Lc) and the degree of preferred orientation (g) increase, while the crystallite interlayer spacing (d002) decreases. The values of both Rs and Rc decrease, while Rs decreases more quickly. It implies that the degrees of skin-core of the carbon fibers increase. The relationship between mechanical properties and microstructure of the variants is also explored in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Huang Y, Young RJ (1995) Carbon 33:97. doi:https://doi.org/10.1016/0008-6223(94)00109-D

    Article  CAS  Google Scholar 

  2. Edie DD (1998) Carbon 36:345. doi:https://doi.org/10.1016/S0008-6223(97)00185-1

    Article  CAS  Google Scholar 

  3. Fizer E (1989) Carbon 27:621. doi:https://doi.org/10.1016/0008-6223(89)90197-8

    Article  Google Scholar 

  4. Endo M (1988) J Mater Sci 23:598. doi:https://doi.org/10.1007/BF01174692

    Article  CAS  Google Scholar 

  5. Wicks BJ, Coyle RA (1976) J Mater Sci 11:376. doi:https://doi.org/10.1007/BF00551449

    Article  CAS  Google Scholar 

  6. Dieter L, Oskar P, Rennhofer H et al (2007) Carbon 45:2801. doi:https://doi.org/10.1016/j.carbon.2007.09.011

    Article  Google Scholar 

  7. Sadezky A, Muckenhuber H, Grothe H et al (2005) Carbon 43:1731. doi:https://doi.org/10.1016/j.carbon.2005.02.018

    Article  CAS  Google Scholar 

  8. Montes-Moran MA, Young RJ (2002) Carbon 40:845. doi:https://doi.org/10.1016/S0008-6223(01)00212-3

    Article  CAS  Google Scholar 

  9. Endo M, Kin C, Karaki T et al (1998) Carbon 36:1633. doi:101016/S0008-6223(98)00157-2

    Article  CAS  Google Scholar 

  10. Melanttis N, Tetlow PL, Galiotis C (1996) J Mater Sci 31:851. doi:https://doi.org/10.1007/BF00352882

    Article  Google Scholar 

  11. Afanasyeva NI, Jawhari T, Klimenko IV et al (1996) Vib Spectrosc 11:79. doi:https://doi.org/10.1016/0924-2031(95)00063-1

    Article  CAS  Google Scholar 

  12. Young RJ, Lu D, Day RJ et al (1992) J Mater Sci 27:5431. doi:https://doi.org/10.1007/BF00541602

    Article  CAS  Google Scholar 

  13. Cuesta A, Dhamelincout P, Laureyns A et al (1998) J Mater Chem 8:2875. doi:https://doi.org/10.1039/a805841e

    Article  CAS  Google Scholar 

  14. Dresselhaus M, Dresselhaus SG (1981) Adv Phys 30:290. doi:https://doi.org/10.1080/00018738100101367

    Article  Google Scholar 

  15. Sadezky A, Muckenhuber H, Grothe H et al (2005) Carbon 43:1731. doi:https://doi.org/10.1016/j.carbon.2005.02.018

    Article  CAS  Google Scholar 

  16. Cuesta A, Dhamelincourt P, Laureyns J et al (1994) Carbon 32:1523. doi:https://doi.org/10.1016/0008-6223(94)90148-1

    Article  CAS  Google Scholar 

  17. Wang Y, Alsmeyer DC, McCreery RL (1990) Chem Mater 2:557. doi:https://doi.org/10.1021/cm00011a018

    Article  CAS  Google Scholar 

  18. Al-Jishi R, Dresselhaus G (1982) Phys Rev B 26:4514. doi:https://doi.org/10.1103/PhysRevB.26.4514

    Article  CAS  Google Scholar 

  19. Moreton R, Watt W, Johnson W (1967) Nature 213:690. doi:https://doi.org/10.1038/213690a0

    Article  CAS  Google Scholar 

  20. Cooper GA, Mayer RM (1971) J Mater Sci 6:60. doi:https://doi.org/10.1007/BF00550292

    Article  CAS  Google Scholar 

  21. Johnson DJ (1987) J Phys D Appl Phys 20:287. doi:https://doi.org/10.1088/0022-3727/20/3/007

    Article  Google Scholar 

  22. Young RJ, Lu D, Day RJ et al (1992) J Mater Sci 27:5431. doi:https://doi.org/10.1007/BF00541602

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Professor He Fu for helpful discussions. The financial support of the National Ministries and Commissions Primary Foundation of China (grant no. 614002) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fujie Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, F., Wang, H., Xue, L. et al. Effect of microstructure on the mechanical properties of PAN-based carbon fibers during high-temperature graphitization. J Mater Sci 43, 4316–4322 (2008). https://doi.org/10.1007/s10853-008-2633-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2633-y

Keywords

Navigation