Skip to main content
Log in

Investigation of effect of doping concentration in Nb-doped TiO2 thin films for TCO applications

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nb-doped TiO2 (referred hereafter as NTO) thin films were deposited by sol–gel spin coating method to investigate their use as transparent conducting electrode (TCE). A range of Nb x Ti1−x O2 (x = 0, 0.003, 0.005, 0.008, 0.01, 0.015, 0.02) compositions were synthesized and deposited as thin films via spin coating. The films were deposited at room temperature and showed crystallization on annealing at 550 °C for 1 h in air. The X-ray diffraction confirms formation of anatase TiO2 by showing dominant peak at 2θ ~25.5° corresponding to (101) reflection plane. Raman spectroscopy shows the characteristics modes of TiO2. Surface topography and morphology measured by atomic force microscopy and field-emission scanning electron microscopy exhibit smooth and uniform deposition of films. Optical transmittance reduces from 85 to 70% as Nb content increases from 0 to 2 at.%. Meanwhile, electrical resistivity attained a minimum value of 3.65 Ω cm for 2 at.% Nb doping. X-ray photoelectron spectroscopy analysis exhibits shifting of Ti 2p peak which confirms substitution by Nb5+ in TiO2 lattice and Nb–O–Ti bond formation. Transmission electron microscope and selected area electron diffraction patterns reveal that films consist of Nb and crystalline phase of TiO2. All films were characterized by Fourier transmission infrared spectroscopy and thermogravimetric analysis. Present study reports low-cost and effective fabrication of TCE for optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Chopra KL, Major S, Pandya DK (1983) Transparent conductors—a status review. Thin Solid Films 102:1–46. doi:10.1016/0040-6090(83)90256-0

    Article  Google Scholar 

  2. Minami T (2008) Present status of transparent conducting oxide thin-film development for indium–tin-oxide (ITO) substitutes. Thin Solid Films 516:5822–5828. doi:10.1016/j.tsf.2007.10.063

    Article  Google Scholar 

  3. Ellmer K (2012) Past achievements and future challenges in the development of optically transparent electrodes. Nat Photonics 6:808–816. doi:10.1038/nphoton.2012.282

    Article  Google Scholar 

  4. Exarhos GJ, Zhou X-D (2007) Discovery-based design of transparent conducting oxide films. Thin Solid Films 515:7025–7052. doi:10.1016/j.tsf.2007.03.014

    Article  Google Scholar 

  5. Guillén C, Herrero J (2011) TCO/metal/TCO structures for energy and flexible electronics. Thin Solid Films 520:1–17. doi:10.1016/j.tsf.2011.06.091

    Article  Google Scholar 

  6. Sharma V, Vyas R, Bazylewski P et al (2016) Probing the highly transparent and conducting SnOx/Au/SnOx structure for futuristic TCO applications. RSC Adv 6:29135–29141. doi:10.1039/C5RA24422F

    Article  Google Scholar 

  7. Sharma V, Singh S, Asokan K, Sachdev K (2016) A study on 100 MeV O7+ irradiated SnO2/Ag/SnO2 multilayer as transparent electrode for flat panel display application. Nuclear Inst Methods Phys Res B. doi:10.1016/j.nimb.2016.04.059

    Google Scholar 

  8. Duta M, Simeonov S, Teodorescu V et al (2016) Structural and electrical properties of Nb doped TiO2 films prepared by the sol–gel layer-by-layer technique. Mater Res Bull 74:15–20. doi:10.1016/j.materresbull.2015.10.009

    Article  Google Scholar 

  9. Kasai J, Hitosugi T, Moriyama M et al (2010) Properties of TiO2-based transparent conducting oxide thin films on GaN(0001) surfaces. J Appl Phys. doi:10.1063/1.3326943

    Google Scholar 

  10. Hung KH, Lee PW, Hsu WC et al (2011) Transparent conducting oxide films of heavily Nb-doped titania by reactive co-sputtering. J Alloys Compd 509:10190–10194. doi:10.1016/j.jallcom.2011.08.020

    Article  Google Scholar 

  11. Fallah M, Zamani-Meymian M-R, Rahimi R, Rabbani M (2014) Effect of annealing treatment on electrical and optical properties of Nb doped TiO2 thin films as a TCO prepared by sol–gel spin coating method. Appl Surf Sci 316:456–462. doi:10.1016/j.apsusc.2014.08.029

    Article  Google Scholar 

  12. Lee JK, Jung HS, Valdez JA et al (2006) Room temperature ferromagnetism of Co doped TiO2 using ion implantation and defect engineering. Nucl Instrum Methods Phys Res Sect B 250:279–282. doi:10.1016/j.nimb.2006.04.171

    Article  Google Scholar 

  13. Su H, Huang YT, Chang YH et al (2015) The synthesis of Nb-doped TiO2 nanoparticles for improved-performance dye sensitized solar cells. Electrochim Acta 182:230–237. doi:10.1016/j.electacta.2015.09.072

    Article  Google Scholar 

  14. Uyanga E, Gibaud A, Daniel P et al (2014) Structural and vibrational investigations of Nb-doped TiO2 thin films. Mater Res Bull 60:222–231. doi:10.1016/j.materresbull.2014.08.035

    Article  Google Scholar 

  15. Zhang WF, He YL, Zhang MS et al (2000) Raman scattering study on anatase TiO2 nanocrystals. J Phys D Appl Phys 33:912–916. doi:10.1088/0022-3727/33/8/305

    Article  Google Scholar 

  16. De Trizio L, Buonsanti R, Schimpf AM et al (2013) Nb-doped colloidal TiO2 nanocrystals with tunable infrared absorption. Chem Mater 25:3383–3390. doi:10.1021/cm402396c

    Article  Google Scholar 

  17. Parker JC, Siegel RW (1990) Raman microprobe study of nanophase TiO2 and oxidation-induced spectral changes. J Mater Res 5:1246–1252. doi:10.1557/JMR.1990.1246

    Article  Google Scholar 

  18. Parker JC, Siegel RW (1990) Calibration of the Raman spectrum to the oxygen stoichiometry of nanophase TiO2. Appl Phys Lett 57:943–945. doi:10.1063/1.104274

    Article  Google Scholar 

  19. Mazzolini P, Russo V, Casari CS et al (2016) Vibrational–electrical properties relationship in donor-doped TiO2 by Raman spectroscopy. J Phys Chem C 120:18878–18886. doi:10.1021/acs.jpcc.6b05282

    Article  Google Scholar 

  20. Yang J, Zhang X, Wang C et al (2012) Solar photocatalytic activities of porous Nb-doped TiO2 microspheres prepared by ultrasonic spray pyrolysis. Solid State Sci 14:139–144. doi:10.1016/j.solidstatesciences.2011.11.010

    Article  Google Scholar 

  21. Yang M, Hume C, Lee S et al (2010) Correlation between photocatalytic efficacy and electronic band structure in hydrothermally grown TiO2 nanoparticles. J Phys Chem C 114:15292–15297. doi:10.1021/jp103764n

    Article  Google Scholar 

  22. Perumal S, Sambandam GC, Prabu MK, Ananthakumar S (2014) Synthesis and characterization studies of nano TiO2 prepared via sol–gel method. Int J Res Eng Technol 3:651–657

    Google Scholar 

  23. Battiston G, Gerbasi R, Porchia M (1994) Influence of substrate on structural properties of TiO2 thin films obtained via MOCVD. Thin Solid Films 239:186–191

    Article  Google Scholar 

  24. Sambandam CG, Mohamed AP (2014) Synthesis and characterization studies of solvothermally synthesized undoped and ag-doped TiO2 nanoparticles using toluene as a solvent. J Eng Res Appl 4:184–187

    Google Scholar 

  25. Al-taweel SS, Saud HR (2016) New route for synthesis of pure anatase TiO2 nanoparticles via utrasound-assisted sol–gel method D = β cos θ. J Chem Pharm Res 8(2):620–626

    Google Scholar 

  26. Nikolay T, Larina L, Shevaleevskiy O, Ahn BT (2011) Electronic structure study of lightly Nb-doped TiO2 electrode for dye-sensitized solar cells. Energy Environ Sci 4:1480. doi:10.1039/c0ee00678e

    Article  Google Scholar 

  27. Gan L, Wu C, Tan Y et al (2014) Oxygen sensing performance of Nb-doped TiO2 thin film with porous structure. J Alloys Compd 585:729–733. doi:10.1016/j.jallcom.2013.09.161

    Article  Google Scholar 

  28. Singh S, Sharma V, Sachdev K (2016) Investigation of post annealing effects on Nb:TiO2 transparent conducting thin films. Adv Sci Lett 22:3773–3776

    Article  Google Scholar 

  29. Wang M, Gao Y, Chen Z et al (2013) Transparent and conductive W-doped SnO2 thin films fabricated by an aqueous solution process. Thin Solid Films 544:419–426. doi:10.1016/j.tsf.2013.02.088

    Article  Google Scholar 

  30. Wang Y, Smarsly BM, Djerdj I (2010) Niobium doped TiO2 with mesoporosity and its application for lithium insertion. Chem Mater 22:6624–6631. doi:10.1021/cm1020977

    Article  Google Scholar 

  31. Sibu CP, Kumar SR, Mukundan P, Warrier KGK (2002) Structural modifications and associated properties of lanthanum oxide doped sol–gel nanosized titanium oxide. Chem Mater 14:2876–2881. doi:10.1021/cm010966p

    Article  Google Scholar 

  32. Potlog T, Dumitriu P, Dobromir M et al (2015) Nb-doped TiO2 thin films for photovoltaic applications. Mater Des 85:558–563. doi:10.1016/j.matdes.2015.07.034

    Article  Google Scholar 

  33. Wang C, Li J, Dho J (2014) Post-deposition annealing effects on the transparent conducting properties of anatase Nb:TiO2 films on glass substrates. Mater Sci Eng B Solid-State Mater Adv Technol 182:1–5. doi:10.1016/j.mseb.2013.11.021

    Article  Google Scholar 

  34. Tauc J (1974) Optical properties of amorphous semiconductors. Amorph Liq Semicond. doi:10.1007/978-1-4615-8705-7_4

    Article  Google Scholar 

  35. Chen M, Pei ZL, Wang X et al (2000) Intrinsic limit of electrical properties. J Phys D Appl Phys 33:2538–2548

    Article  Google Scholar 

  36. van der Pauw LJ (1958) A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape. Philips Tech Rev 20:220–224

    Google Scholar 

  37. Liu J, Zhao X, Duan L et al (2011) Influence of annealing process on conductive properties of Nb-doped TiO2 polycrystalline films prepared by sol–gel method. Appl Surf Sci 257:10156–10160. doi:10.1016/j.apsusc.2011.07.009

    Article  Google Scholar 

  38. Zhao L, Zhao X, Liu J et al (2010) Fabrications of Nb-doped TiO2 (TNO) transparent conductive oxide polycrystalline films on glass substrates by sol–gel method. J Sol–Gel Sci Technol 53:475–479. doi:10.1007/s10971-009-2102-3

    Article  Google Scholar 

  39. Rao CNR, Sarma DD, Vasudevan S, Hegde MS (1979) Study of transition metal oxides by photoelectron spectroscopy. Proc R Soc A Math Phys Eng Sci 367:239–252. doi:10.1098/rspa.1979.0085

    Article  Google Scholar 

  40. Sanjinés R, Tang H, Berger H et al (1994) Electronic structure of anatase TiO2 oxide. J Appl Phys 75:2945–2951. doi:10.1063/1.356190

    Article  Google Scholar 

  41. Berko A, Ulrych I, Prince KC (1998) Encapsulation of Rh nanoparticles supported on TiO2(110)-(1x1) surface: XPS and STM studies. J Phys Chem B 102:3379–3386. doi:10.1021/jp973255g

    Article  Google Scholar 

  42. Song Z, Hrbek J, Osgood R (2005) Formation of TiO2 nanoparticles by reactive-layer-assisted deposition and characterization by XPS and STM. Nano Lett 5:1327–1332. doi:10.1021/nl0505703

    Article  Google Scholar 

  43. Atashbar MZ, Sun HT, Gong B et al (1998) XPS study of Nb-doped oxygen sensing TiO2 thin films prepared by sol–gel method. Thin Solid Films 326:238–244

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Physics, MNIT Jaipur. The authors are grateful to Materials Research Centre, MNIT Jaipur, for various fabrication and characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanupriya Sachdev.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 921 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Sharma, V. & Sachdev, K. Investigation of effect of doping concentration in Nb-doped TiO2 thin films for TCO applications. J Mater Sci 52, 11580–11591 (2017). https://doi.org/10.1007/s10853-017-1328-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1328-7

Keywords

Navigation