Skip to main content
Log in

Influence of Oxygen Vacancies on Atomic Chemistry and Transparent Conductivity of Nb-Doped TiO2 Films

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Nb-doped TiO2 (NTO) thin films were sputtered on glass substrate followed by a simple annealing process in air. The photoelectric cooperative optimization was discussed based on the structural, optical and electrical characteristics. The influence of oxygen flow during deposition on materials chemistry and performance was analyzed. Hall measurement showed a strong dependence of transparent conductivity on the oxygen flow. Oxygen vacancies are related to the phase transitions from the rutile to anatase TiO2 during annealing. The chemical states of Nb, Ti and O before and after annealing were discussed. The achievement of optimized transparent conductivity was resultant from the fine-tuning of the doped chemistry and special interplay of dopants and host lattice.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B. Sarma, D. Barman, and B.K. Sarma, AZO (Al: ZnO) thin films with high figure of merit as stable indium free transparent conducting oxide. Appl. Surf. Sci. 479, 786–795 (2019).

    Article  CAS  Google Scholar 

  2. R.A. Afre, N. Sharma, M. Sharon, and M. Sharon, Transparent conducting oxide films for various applications: a review. J Reviews on advanced materials science 53, 79–89 (2018).

    Article  CAS  Google Scholar 

  3. B.H. Kim, C.M. Staller, S.H. Cho, S. Heo, C.E. Garrison, J. Kim, and D.J. Milliron, High mobility in nanocrystal-based transparent conducting oxide thin films. ACS Nano 12, 3200 (2018).

    Article  CAS  Google Scholar 

  4. S. Ozbay, N. Erdogan, F. Erden, M. Ekmekcioglu, B. Rakop, M. Ozdemir, G. Aygun, and L. Ozyuzer, Surface free energy and wettability properties of transparent conducting oxide-based films with Ag interlayer. Appl. Surf. Sci. 567, 150901 (2021).

    Article  CAS  Google Scholar 

  5. A. Sharmin, S. Tabassum, M. Bashar, and Z.H. Mahmood, Depositions and characterization of sol–gel processed Al-doped ZnO (AZO) as transparent conducting oxide (TCO) for solar cell application, Journal of Theoretical. Appl. Phys. 13, 123 (2019).

    Google Scholar 

  6. T. Koida, Y. Ueno, and H. Shibata, In2O3 based transparent conducting oxide films with high electron mobility fabricated at low process temperatures. Phys. Status Solids 215, 1700506 (2018).

    Article  Google Scholar 

  7. M.H. Mamat, M.Z. Sahdan, S. Amizam, H.A. Rafaie, Z. Khusaimi, M. Rusop, M. Rusop, and T. Soga, Al Doped ZnO Thin Film Based Ultraviolet Photo-Conductive Sensor Prepared by Sol-Gel Spin-Coating. Method 591, 595 (2009).

    Google Scholar 

  8. J. Jang, Y. Kang, D. Cha, J. Bae, and S. Lee, Thin-film optical devices based on transparent conducting oxides: physical mechanisms and applications. J Crystals 9, 192 (2019).

    Article  CAS  Google Scholar 

  9. D. Jayathilake, T.N.J.S.J.M.C.E. Peiris, Overview on transparent conducting oxides and state of the art of low-cost doped ZnO systems. J Material Chem Eng, 1004 (2018).

  10. P.J. Reed, H. Mehrabi, Z.G. Schichtl, and R.H. Coridan, Enhanced electrochemical stability of TiO2-protected, Al-doped ZnO transparent conducting oxide synthesized by atomic layer deposition. ACS Appl. Mater. Interf. 10, 43691 (2018).

    Article  CAS  Google Scholar 

  11. M. Fallah, M.-R. Zamani-Meymian, R. Rahimi, and M. Rabbani, Effect of annealing treatment on electrical and optical properties of Nb doped TiO2 thin films as a TCO prepared by sol–gel spin coating method. Appl Surf Sci 316, 456 (2014).

    Article  CAS  Google Scholar 

  12. D.S. Bhachu, S. Sathasivam, G. Sankar, D.O. Scanlon, G. Cibin, C.J. Carmalt, I.P. Parkin, G.W. Watson, S.M. Bawaked, and A.Y. Obaid, Solution processing route to multifunctional titania thin films: highly conductive and photcatalytically active Nb: TiO2. Adv. Func. Mater. 24, 5075 (2014).

    Article  CAS  Google Scholar 

  13. L. Lu, M. Guo, S. Thornley, X. Han, J. Hu, M.J. Thwaites, and G. Shao, Remote plasma sputtering deposited Nb-doped TiO2 with remarkable transparent conductivity. Sol. Energy Mater. Sol. Cells 149, 310 (2016).

    Article  CAS  Google Scholar 

  14. S. Hussain, H. Erikson, N. Kongi, A. Tarre, P. Ritslaid, A. Kikas, V. Kisand, J. Kozlova, J. Aarik, and A. Tamm, Platinum sputtered on Nb-doped TiO2 films prepared by ALD: highly active and durable carbon-free ORR electrocatalyst. J. Electrochem. Soc. 167, 164505 (2020).

    Article  CAS  Google Scholar 

  15. C. Cheng, N. Li, Z. Wang, H. Zhang, and J. Chen, Thermodynamically Driven Surface Dedoping of Nb-Doped TiO2 for Stable Perovskite Solar Cells. J. Phys. Chem. C 124, 14419 (2020).

    Article  CAS  Google Scholar 

  16. X. Han, K. Song, L. Lu, Q. Deng, X. Xia, and G. Shao, Limitation and extrapolation correction of the GGA + U formalism: a case study of Nb-doped anatase TiO2. J. of Mater. Chem. C 1, 3736 (2013).

    Article  CAS  Google Scholar 

  17. D. Casotti, V. Orsini, A. di Bona, S. Gardonio, M. Fanetti, M. Valant, and S. Valeri, Ageing effects on electrical resistivity of Nb-doped TiO2 thin films deposited at a high rate by reactive DC magnetron sputtering. Appl. Surf. Sci. 455, 267 (2018).

    Article  CAS  Google Scholar 

  18. F.M. Li, R. Waddingham, W.I. Milne, A.J. Flewitt, S. Speakman, J. Dutson, S. Wakeham, and M. Thwaites, Low temperature (< 100 °C) deposited P-type cuprous oxide thin films: Importance of controlled oxygen and deposition energy. Thin Solid Films 520, 1278 (2011).

    Article  CAS  Google Scholar 

  19. Y. Shen, M. Guo, X. Xia, and G. Shao, Role of materials chemistry on the electrical/electronic properties of CuO thin films. Acta Mater 85, 122–131 (2015).

    Article  CAS  Google Scholar 

  20. A. Fujishima, X. Zhang, and D. Tryk, TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63, 515–582 (2008).

    Article  CAS  Google Scholar 

  21. H.-Y. Lee, and J. Robertson, Doping and compensation in Nb-doped anatase and rutile TiO2. J. Appl. Phys. 113, 213706 (2013).

    Article  Google Scholar 

  22. F. Alcaide, R.V. Genova, G. Álvarez, H.-J. Grande, Ó. Miguel, and P.L. Cabot, Platinum-catalyzed Nb–doped TiO2 and Nb-doped TiO2 nanotubes for hydrogen generation in proton exchange membrane water electrolyzers. Int. J. Hydrogen Energy 45, 20605 (2020).

    Article  CAS  Google Scholar 

  23. D.Y. Lee, J.-H. Park, Y.-H. Kim, M.-H. Lee, and N.-I. Cho, Effect of Nb doping on morphology, crystal structure, optical band gap energy of TiO2 thin films. Curr. Appl. Phys. 14, 421 (2014).

    Article  Google Scholar 

  24. X.H. Xia, L. Lu, A.S. Walton, M. Ward, X.P. Han, R. Brydson, J.K. Luo, and G. Shao, Origin of significant visible-light absorption properties of Mn-doped TiO2 thin films. Acta Mater 60, 1974 (2012).

    Article  CAS  Google Scholar 

  25. A.V. Manole, M. Dobromir, M. Gîrtan, R. Mallet, G. Rusu, and D. Luca, Optical properties of Nb-doped TiO2 thin films prepared by sol–gel method. Ceram Int 39, 4771 (2013).

    Article  CAS  Google Scholar 

  26. N. Yamada, T. Hitosugi, N.L.H. Hoang, Y. Furubayashi, Y. Hirose, S. Konuma, T. Shimada, and T. Hasegawa, Structural, electrical and optical properties of sputter-deposited Nb-doped TiO2 (TNO) polycrystalline films. Thin Solid Films 516, 5754 (2008).

    Article  CAS  Google Scholar 

  27. A. Manole, M. Dobromir, M. Girtan, R. Mallet, G. Rusu, and D. Luca, Optical properties of Nb-doped TiO2 thin films prepared by sol–gel method. Ceram. Int. 39, 4771 (2013).

    Article  CAS  Google Scholar 

  28. P.S. Archana, R. Jose, M.M. Yusoff, and S. Ramakrishna, Near band-edge electron diffusion in electrospun Nb-doped anatase TiO2 nanofibers probed by electrochemical impedance spectroscopy. Appl Phys Lett 98, 152106 (2011).

    Article  Google Scholar 

  29. K.C. Ok, J. Park, J. Ho Lee, B. Du Ahn, J. Hun Lee, K.B. Chung, and J.S. Park, Semiconducting behavior of niobium-doped titanium oxide in the amorphous state. Appl. Phys. Lett. 100, 142103 (2012).

    Article  Google Scholar 

  30. C. He, S. Sankarasubramanian, I. Matanovic, P. Atanassov, and V. Ramani, Understanding the Oxygen Reduction Reaction Activity and Oxidative Stability of Pt Supported on Nb Doped TiO2. Chemsuschem 12, 3468 (2019).

    Article  CAS  Google Scholar 

  31. V. Galstyan, A. Ponzoni, I. Kholmanov, M.M. Natile, E. Comini, S. Nematov, and G. Sberveglieri, Investigation of reduced graphene oxide and a Nb-doped TiO2 nanotube hybrid structure to improve the gas-sensing response and selectivity. ACS sensors 4, 2094 (2019).

    Article  CAS  Google Scholar 

  32. B. Santara, P.K. Giri, K. Imakita, and M. Fujii, Evidence of oxygen vacancy induced room temperature ferromagnetism in solvothermally synthesized undoped TiO2 nanoribbons. Nanoscale 5, 5476 (2013).

    Article  CAS  Google Scholar 

  33. R.V. Genova-Koleva, F. Alcaide, G. Álvarez, P.L. Cabot, H.-J. Grande, M.V. Martínez-Huerta, and O. Miguel, Supporting IrO2 and IrRuOx nanoparticles on TiO2 and Nb-doped TiO2 nanotubes as electrocatalysts for the oxygen evolution reaction. J. Energy Chem. 34, 227 (2019).

    Article  Google Scholar 

  34. X. Liu, D. Kepaptsoglou, Z. Gao, A. Thomas, K. Maji, E. Guilmeau, F. Azough, Q.M. Ramasse, and R. Freer, Controlling the Thermoelectric Properties of Nb-Doped TiO2 Ceramics through Engineering Defect Structures. ACS Appl. Mater. Interf. 13, 57326 (2021).

    Article  CAS  Google Scholar 

  35. Y. Sanehira, N. Shibayama, Y. Numata, M. Ikegami, and T. Miyasaka, Low-temperature synthesized Nb-doped TiO2 electron transport layer enabling high-efficiency perovskite solar cells by band alignment tuning. ACS Appl. Mater. Interf. 12, 15175 (2020).

    Article  CAS  Google Scholar 

  36. R.-S. Zhang, Y. Liu, Q. Gao, F. Teng, C.-L. Song, W. Wang, and G.-R. Han, First-principles study on the electronic and optical properties of F- and Nb-doped anatase TiO2. J. Alloy. Compd. 509, 9178 (2011).

    Article  CAS  Google Scholar 

  37. Y. Tanaka, H. Usui, Y. Domi, M. Ohtani, K. Kobiro, and H. Sakaguchi, Mesoporous spherical aggregates consisted of Nb-doped anatase TiO2 nanoparticles for Li and Na storage materials. ACS Appl. Energy Mater. 2, 636 (2018).

    Article  Google Scholar 

  38. J.-H. Lee, D.G. Lee, H.S. Jung, H.H. Lee, and H.-K. Kim, ITO and electron transport layer-free planar perovskite solar cells on transparent Nb-doped anatase TiO2-x electrodes. J. Alloys Compounds 845, 155531 (2020).

    Article  CAS  Google Scholar 

  39. R.-S. Zhang, Y. Liu, Q. Gao, F. Teng, C.-L. Song, W. Wang, and G.-R. Han, First-principles study on the electronic and optical properties of F-and Nb-doped anatase TiO2. J. Alloys Compounds 509, 9178 (2011).

    Article  CAS  Google Scholar 

  40. G.X. Zhou, S.J. Xiong, X.L. Wu, L.Z. Liu, T.H. Li, and P.K. Chu, N-doped SnO2 nanocrystals with green emission dependent upon mutual effects of nitrogen dopant and oxygen vacancy. Acta Mater 61, 7342 (2013).

    Article  CAS  Google Scholar 

  41. L.Z. Liu, T.H. Li, X.L. Wu, J.C. Shen, and P.K. Chu, Identification of oxygen vacancy types from Raman spectra of SnO2 nanocrystals. J. Raman Spectrosc. 43, 1423–1426 (2012).

    Article  CAS  Google Scholar 

  42. X. Qian, W. Yang, S. Gao, J. Xiao, S. Basu, A. Yoshimura, Y. Shi, V. Meunier, and Q. Li, Highly selective, defect-induced photocatalytic CO2 reduction to acetaldehyde by the Nb-doped TiO2 nanotube Array under simulated solar illumination. ACS Appl. Mater. Interf. 12, 55982 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the National Key Research and Development Program of China (2021YFB4001802-03) and Excellent Young Scholars of the Natural Science Foundation of Shandong Province (Overseas, 2022HWYQ-090). This work was also supported by the Scientific and Education Program of Qilu University of Technology (Shandong Academy of Sciences) (No. 2022PX047&2022GH010).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written with contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Angang Song or Junhua Hu.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, A., Cao, G., Zhu, D. et al. Influence of Oxygen Vacancies on Atomic Chemistry and Transparent Conductivity of Nb-Doped TiO2 Films. J. Electron. Mater. 51, 6885–6893 (2022). https://doi.org/10.1007/s11664-022-09917-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09917-9

Keywords

Navigation