Skip to main content
Log in

Enhancement of the acetone sensing capabilities to ppb detection level by Fe-doped three-dimensional SnO2 hierarchical microstructures fabricated via a hydrothermal method

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Acetone detection at the parts-per-billion (ppb) level is achieved in this work using selective and optimized Fe doping of the three-dimensional (3D) flower-like SnO2 hierarchical microstructures. These structures were successfully synthesized via a one-step hydrothermal route. Detailed information about the crystal structure, surface morphology and composition of the Fe-doped SnO2 microstructures was investigated using X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) techniques. Gas sensing experiments were conducted on the as-prepared Fe-doped SnO2 sensors. The measured results show that the incorporation of Fe into the SnO2 structure can greatly enhance the gas sensing properties of SnO2 sensors under the optimum working temperature (200 °C). Specifically, the 1.0 mol% Fe-doped SnO2 microstructures exhibit the highest response, fast response/recovery time, lowest detection limit and good selectivity and long-term stability. The results demonstrate that the developed Fe-doped SnO2 gas sensor has great potential for ppb-level acetone detection in many practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Liu S, Zhang F, Li H, Chen T, Wang Y (2012) Acetone detection properties of single crystalline tungsten oxide plates synthesized by hydrothermal method using cetyltrimethyl ammonium bromide supermolecular template. Sens Actuators, B 162:259–268

    Article  Google Scholar 

  2. Liu X, Hu J, Cheng B, Qin H, Jiang M (2008) Acetone gas sensing properties of SmFe1-xMgxO3 perovskite oxides. Sens Actuators, B 134:483–487

    Article  Google Scholar 

  3. Righettoni M, Tricoli A, Pratsinis SE (2010) Si:WO3 Sensors for highly selective detection of acetone for easy diagnosis of diabetes by breath analysis. Anal Chem 82:3581–3587

    Article  Google Scholar 

  4. Kumar S, Huang J, Abbassi-Ghadi N, ŠPaněL P, Smith D, Hanna GB (2013) Selected ion flow tube mass spectrometry analysis of exhaled breath for volatile organic compound profiling of esophago-gastric cancer. Anal Chem 85:6121–6128

    Article  Google Scholar 

  5. Kamat PC, Roller CB, Namjou K, Jeffers JD, Faramarzalian A, Salas R, Mccann PJ (2007) Measurement of acetaldehyde in exhaled breath using a laser absorption spectrometer. Appl Optics 46:3969–3975

    Article  Google Scholar 

  6. Choi SJ, Lee I, Jang BH, Youn DY, Ryu WH, Park CO, Kim ID (2013) Selective diagnosis of diabetes using Pt-functionalized WO3 hemitube networks as a sensing layer of acetone in exhaled breath. Anal Chem 85:1792–1796

    Article  Google Scholar 

  7. Tang W, Wang J, Qiao Q, Liu Z, Li X (2015) Mechanism for acetone sensing property of Pd-loaded SnO2 nanofibers prepared by electrospinning: fermi-level effects. J Mater Sci 50:2605–2615. doi:10.1007/s10853-015-8836-0

    Article  Google Scholar 

  8. Kumar A, Sanger A, Kumar A, Chandra R (2016) Highly sensitive and selective CO gas sensor based on a hydrophobic SnO2/CuO bilayer. RSC Adv 6:47178–47184

    Article  Google Scholar 

  9. Jain S, Sanger A, Chauhan S, Chandra R (2014) Hydrogen sensing properties of nanostructured Pd/WO3 thin films: role of hydrophobicity during recovery process. Mater Res Express 1:035046

    Article  Google Scholar 

  10. Sun Y, Chen L, Wang Y, Zhao Z, Li P, Zhang W, Leprince-Wang Y, Hu J (2017) Synthesis of MoO3/WO3 composite nanostructures for highly sensitive ethanol and acetone detection. J Mater Sci 52:1561–1572. doi:10.1007/s10853-016-0450-2

    Article  Google Scholar 

  11. Zhu BL, Xie CS, Zeng DW, Wang AH, Song WL, Zhao XZ (2005) New method of synthesizing In2O3 nanoparticles for application in volatile organic compounds (VOCs) gas sensors. J Mater Sci 40:5783–5785. doi:10.1007/s10853-005-4562-3

    Article  Google Scholar 

  12. Song P, Wang Q, Yang Z (2012) Acetone sensing characteristics of ZnO hollow spheres prepared by one-pot hydrothermal reaction. Mater Lett 86:168–170

    Article  Google Scholar 

  13. Wang C, Liu J, Yang Q, Sun P, Gao Y, Liu F, Zheng J, Lu G (2015) Ultrasensitive and low detection limit of acetone gas sensor based on W-doped NiO hierarchical nanostructure. Sens Actuators, B 220:59–67

    Article  Google Scholar 

  14. Sanger A, Kumar A, Kumar A, Chandra R (2016) Highly sensitive and selective hydrogen gas sensor using sputtered grown Pd decorated MnO2 nanowalls. Sens Actuators, B 234:8–14

    Article  Google Scholar 

  15. Sanger A, Kumar A, Kumar A, Jaiswal J, Chandra R (2016) A fast response/recovery of hydrophobic Pd/V2O5 thin films for hydrogen gas sensing. Sens Actuators, B 236:16–26

    Article  Google Scholar 

  16. Liu Y, Jiao Y, Zhang Z, Qu F, Umar A, Wu X (2014) Hierarchical SnO2 nanostructures made of intermingled ultrathin nanosheets for environmental remediation, smart gas sensor, and supercapacitor applications. Appl Mater Interfaces 6:2174–2184

    Article  Google Scholar 

  17. Lee JH, Katoch A, Choi SW, Kim JH, Kim HW, Kim SS (2015) Extraordinary improvement of gas-sensing performances in SnO2 nanofibers due to creation of local p–n heterojunctions by loading reduced graphene oxide nanosheets. Appl Mater Interfaces 7:3101–3109

    Article  Google Scholar 

  18. Li L, He S, Liu M, Zhang C, Chen W (2015) Three-dimensional mesoporous graphene aerogel-supported SnO2 nanocrystals for high-performance NO2 gas sensing at low temperature. Anal Chem 87:1638–1645

    Article  Google Scholar 

  19. Wu J, Zeng D, Tian S, Xu K, Li D, Xie C (2015) Competitive influence of surface area and mesopore size on gas-sensing properties of SnO2 hollow fibers. J Mater Sci 50:7725–7734. doi:10.1007/s10853-015-9339-8

    Article  Google Scholar 

  20. Yu YT, Dutta P (2011) Examination of Au/SnO2 core-shell architecture nanoparticle for low temperature gas sensing applications. Sens Actuators, B 157:444–449

    Article  Google Scholar 

  21. Gao F, Qin G, Li Y, Jiang Q, Luo L, Zhao K, Liu Y, Zhao H (2016) One-pot synthesis of La-doped SnO2 layered nanoarrays with enhanced gas-sensing performance toward acetone. RSC Adv 6:10298–10310

    Article  Google Scholar 

  22. Zhao Q, Ju D, Deng X, Huang J, Cao B, Xu X (2015) Morphology-modulation of SnO2 hierarchical architectures by Zn doping for glycol gas sensing and photocatalytic applications. Sci Rep 5:7874

    Article  Google Scholar 

  23. Lou Z, Wang L, Fei T, Zhang T (2012) Enhanced ethanol sensing properties of NiO-doped SnO2 polyhedra. New J Chem 36:1003–1007

    Article  Google Scholar 

  24. Sun P, Zhou X, Wang C, Wang B, Xu X, Lu G (2014) One-step synthesis and gas sensing properties of hierarchical Cd-doped SnO2 nanostructures. Sens Actuators, B 190:32–39

    Article  Google Scholar 

  25. Wang Z, Liu L (2009) Synthesis and ethanol sensing properties of Fe-doped SnO2 nanofibers. Mater Lett 63:917–919

    Article  Google Scholar 

  26. Li X, Zhou X, Guo H, Wang C, Liu J, Sun P, Liu F, Lu G (2014) Design of Au@ ZnO yolk–shell nanospheres with enhanced gas sensing properties. Appl Mater Interfaces 6:18661–18667

    Article  Google Scholar 

  27. Qin G, Gao F, Jiang Q, Li Y, Liu Y, Luo L, Zhao K, Zhao H (2016) Well-aligned Nd-doped SnO2 nanorods layered array: preparation, characterization and enhanced alcohol-gas sensing performance. Phys Chem Chem Phys 18:5537–5549

    Article  Google Scholar 

  28. Li W, Ma S, Li Y, Li X, Wang C, Yang X, Cheng L, Mao Y, Luo J, Gengzang D (2014) Preparation of Pr-doped SnO2 hollow nanofibers by electrospinning method and their gas sensing properties. J Alloy Compd 605:80–88

    Article  Google Scholar 

  29. Kim HJ, Choi KI, Pan A, Kim ID, Kim HR, Kim KM, Na CW, Cao G, Lee JH (2011) Template-free solvothermal synthesis of hollow hematite spheres and their applications in gas sensors and Li-ion batteries. J Mater Chem 21:6549–6555

    Article  Google Scholar 

  30. Grosvenor AP, Kobe BA, Biesinger MC, Mcintyre NS (2004) Investigation of multiplet splitting of Fe2p XPS spectra and bonding in iron compounds. Surf Interface Anal 36:1564–1574

    Article  Google Scholar 

  31. Bai S, Hu J, Li D, Luo R, Chena A, Liu CC (2011) Quantum-sized ZnO nanoparticles: synthesis, characterization and sensing properties for NO2. J Mater Chem 21:12288–12294

    Article  Google Scholar 

  32. Wei S, Zhou M, Du W (2011) Improved acetone sensing properties of ZnO hollow nanofibers by single capillary electrospinning. Sens Actuators, B 160:753–759

    Article  Google Scholar 

  33. Sahay PP, Nath RK (2008) Al-doped ZnO thin films as methanol sensors. Sens Actuators, B 134:654–659

    Article  Google Scholar 

  34. Li X, Zhou X, Guo H, Wang C, Liu J, Sun P, Liu F, Lu G (2014) Design of Au@ZnO yolk-shell nanospheres with enhanced gas sensing properties. Appl Mater Interfaces 6:18661–18667

    Article  Google Scholar 

  35. Chen D, Xu J, Xie Z, Shen G (2011) Nanowires assembled SnO2 nanopolyhedrons with enhanced gas sensing properties. Appl Mater Interfaces 3:2112–2117

    Article  Google Scholar 

  36. Liu C, Zhao L, Wang B, Sun P, Wang Q, Gao Y, Liang X, Zhang T, Lu G (2017) Acetone gas sensor based on NiO/ZnO hollow spheres: fast response and recovery, and low (ppb) detection limit. J Colloid Interface Sci 495:207–215

    Article  Google Scholar 

  37. Choi KI, Kim HJ, Kang YC, Lee JH (2014) Ultraselective and ultrasensitive detection of H2S in highly humid atmosphere using CuO-loaded SnO2 hollow spheres for real-time diagnosis of halitosis. Sens Actuators, B 194:371–376

    Article  Google Scholar 

  38. Zhang L, Zhao J, Lu H, Li L, Zheng J, Li H, Zhu Z (2012) Facile synthesis and ultrahigh ethanol response of hierarchically porous ZnO nanosheets. Sens Actuators, B 161:209–215

    Article  Google Scholar 

  39. Wang H, Qu Y, Chen H, Lin Z, Dai K (2014) Highly selective n-butanol gas sensor based on mesoporous SnO2 prepared with hydrothermal treatment. Sens Actuators, B 201:153–159

    Article  Google Scholar 

  40. Zhou X, Liu J, Wang C, Sun P, Hu X, Li X, Shimanoe K, Yamazoe N, Lu G (2015) Highly sensitive acetone gas sensor based on porous ZnFe2O4 nanospheres. Sens Actuators, B 206:577–583

    Article  Google Scholar 

  41. Zhang Z, Zhu L, Wen Z, Ye Z (2017) Controllable synthesis of Co3O4 crossed nanosheet arrays toward an acetone gas sensor. Sens Actuators, B 238:1052–1059

    Article  Google Scholar 

  42. Li L, Lin H, Qu F (2013) Synthesis of mesoporous SnO2 nanomaterials with selective gas-sensing properties. J Sol-Gel Sci Techn 67:545–555

    Article  Google Scholar 

  43. Li J, Tang P, Zhang J, Feng Y, Luo R, Chen A, Li D (2016) Facile synthesis and acetone sensing performance of hierarchical SnO2 hollow microspheres with controllable size and shell thickness. Ind Eng Chem Res 55:3588–3595

    Article  Google Scholar 

  44. Chen D, Xu J, Xie Z, Shen G (2011) Nanowires assembled SnO2 nanopolyhedrons with enhanced gas sensing properties. Appl Mater Interfaces 3:2112–2117

    Article  Google Scholar 

  45. Song P, Wang Q, Yang Z (2012) Preparation, characterization and acetone sensing properties of Ce-doped SnO2 hollow spheres. Sens Actuators, B 173:839–846

    Article  Google Scholar 

  46. Sun P, Cai Y, Du S, Xu X, You L, Ma J, Liu F, Liang X, Sun Y, Lu G (2013) Hierarchical α-Fe2O3/SnO2 semiconductor composites: hydrothermal synthesis and gas sensing properties. Sens Actuators, B 182:336–343

    Article  Google Scholar 

  47. Kim KW, Cho PS, Kim SJ, Lee JH, Kang CY, Kim JS, Yoon SJ (2007) The selective detection of C2H5OH using SnO2–ZnO thin film gas sensors prepared by combinatorial solution deposition. Sens Actuators, B 123:318–324

    Article  Google Scholar 

  48. Huang J, Yu K, Gu C, Zhai M, Wu Y, Yang M, Liu J (2010) Preparation of porous flower-shaped SnO2 nanostructures and their gas-sensing property. Sens Actuators, B 147:467–474

    Article  Google Scholar 

  49. Zhang S, Ren F, Wu W, Zhou J, Xiao X, Sun L, Liu Y, Jiang C (2013) Controllable synthesis of recyclable core–shell γ-Fe2O3@SnO2 hollow nanoparticles with enhanced photocatalytic and gas sensing properties. Phys Chem Chem Phys Pccp 15:8228–8236

    Article  Google Scholar 

  50. Wen W, Wu JM, Wang YD (2012) Large-size porous ZnO flakes with superior gas-sensing performance. Appl Phys Lett 100:262111–262114

    Article  Google Scholar 

  51. Xu J, Chen Y, Chen D, Shen J (2006) Hydrothermal synthesis and gas sensing characters of ZnO nanorods. Sens Actuators, B 113:526–531

    Article  Google Scholar 

  52. Kaneti YV, Yue J, Jiang X, Yu A (2013) Controllable synthesis of ZnO nanoflakes with exposed (1010) for enhanced gas sensing performance. J Phys Chem C 117:13153–13162

    Article  Google Scholar 

  53. Zhang T, Chen M, Gu F, Han D, Wang Z, Guo G (2012) Alcohol sensing properties of Er-doped In2O3 hollow spheres. Integr Ferroelectr 138:117–122

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51205274), Higher school science and technology innovation Project of Shanxi (2016137), Natural Science of Shanxi Province (2016011039), Talent Project of Shanxi Province (201605D211036), Science and Technology Major Project of the Shan Xi Science and Technology Department (20121101004), Key Disciplines Construction in Colleges and Universities of Shanxi ([2012]45).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Hu or Lin Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 638 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Wang, Y., Wang, W. et al. Enhancement of the acetone sensing capabilities to ppb detection level by Fe-doped three-dimensional SnO2 hierarchical microstructures fabricated via a hydrothermal method. J Mater Sci 52, 11554–11568 (2017). https://doi.org/10.1007/s10853-017-1319-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1319-8

Keywords

Navigation