Skip to main content

Advertisement

Log in

Electrospun porous nanofibers for electrochemical energy storage

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The demand for energy storage systems is rising due to the rapid development of electric transportation vehicles, and this demand is stimulating research on the next generation of high-performance, high-density energy storage devices. In this work, nanomaterials with excellent electrochemical properties are of particular significance. This review summarizes a variety of methods based on electrospinning techniques for the preparation of porous nanofibers with controllable morphologies. An emphasis is placed on methods involving polymer templates and polymer blend templates, hard templates, and on solvent-induced, nonsolvent-induced or activation methods. As a simple and cost-effective method for preparing one-dimensional nanomaterials, the electrospinning technique is of special significance in the energy storage field, because the as-prepared porous nanofibers exhibit large specific surface areas and interconnected micro-/meso-/macroporous structures. Both of these features enable greater energy storage. Furthermore, this review presents several suggestions for meeting the challenges involved in the preparation and industrial application of electrospun porous nanofibers for advanced energy storage systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2012) Li–O2 and Li–S batteries with high energy storage. Nat Mater 11(1):19–29. doi:10.1038/nmat3191

    Article  Google Scholar 

  2. Zhang BA, Kang FY, Tarascon JM, Kim JK (2016) Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage. Prog Mater Sci 76:319–380. doi:10.1016/j.pmatsci.2015.08.002

    Article  Google Scholar 

  3. Goodenough JB (2014) Electrochemical energy storage in a sustainable modern society. Energy Environ Sci 7(1):14–18. doi:10.1039/C3EE42613K

    Article  Google Scholar 

  4. Arico AS, Bruce P, Scrosati B, Tarascon JM, van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4(5):366–377. doi:10.1038/nmat1368

    Article  Google Scholar 

  5. Hochbaum AI, Chen R, Delgado RD, Liang W, Garnett EC, Najarian M, Majumdar A, Yang P (2008) Enhanced thermoelectric performance of rough silicon nanowires. Nature 451(7175):163–167. doi:10.1038/nature06381

    Article  Google Scholar 

  6. Mai L, Tian X, Xu X, Chang L, Xu L (2014) Nanowire electrodes for electrochemical energy storage devices. Chem Rev 114(23):11828–11862. doi:10.1021/cr500177a

    Article  Google Scholar 

  7. Palmer LC, Stupp SI (2008) Molecular self-assembly into one-dimensional nanostructures. Acc Chem Res 41(12):1674–1684. doi:10.1021/ar8000926

    Article  Google Scholar 

  8. Xia YN, Yang PD, Sun YG, Wu YY, Mayers B, Gates B, Yin YD, Kim F, Yan YQ (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15(5):353–389. doi:10.1002/adma.200390087

    Article  Google Scholar 

  9. Zheng Z, Cheng Y, Yan X, Wang R, Zhang P (2014) Enhanced electrochemical properties of graphene-wrapped ZnMn2O4 nanorods for lithium-ion batteries. J Mater Chem A 2(1):149–154. doi:10.1039/C3TA13511J

    Article  Google Scholar 

  10. Aravindan V, Sundaramurthy J, Suresh Kumar P, Lee Y-S, Ramakrishna S, Madhavi S (2015) Electrospun nanofibers: a prospective electro-active material for constructing high performance Li-ion batteries. Chem Commun 51(12):2225–2234. doi:10.1039/C4CC07824A

    Article  Google Scholar 

  11. Zhang JH, Zhao YR, Han SY, Chen CX, Xu H (2014) Self-assembly of surfactant-like peptides and their applications. Sci China Chem 57(12):1634–1645. doi:10.1007/s11426-014-5234-4

    Article  Google Scholar 

  12. Ryu J, Kim S-W, Kang K, Park CB (2010) Mineralization of self-assembled peptide nanofibers for rechargeable lithium ion batteries. Adv Mater 22(48):5537–5541. doi:10.1002/adma.201000669

    Article  Google Scholar 

  13. Supothina S, Rattanakam R, Tawkaew S (2012) Hydrothermal synthesis and photocatalytic activity of anatase TiO2 nanofiber. J Nanosci Nanotechnol 12(6):4998–5003. doi:10.1166/jnn.2012.4939

    Article  Google Scholar 

  14. Li J, Zhou Z, Zhu L, Xu K, Tang H (2007) Salt effects on crystallization of titanate and the tailoring of its nanostructures. J Phys Chem C 111(45):16768–16773. doi:10.1021/jp0755239

    Article  Google Scholar 

  15. Ma H, Zhang S, Ji W, Tao Z, Chen J (2008) Alpha-CuV2O6 nanowires: hydrothermal synthesis and primary lithium battery application. J Am Chem Soc 130(15):5361–5367. doi:10.1021/ja800109u

    Article  Google Scholar 

  16. Wu CG, Bein T (1994) Conducting polyaniline filaments in a mesoporous channel host. Science 264(5166):1757–1759. doi:10.1126/science.264.5166.1757

    Article  Google Scholar 

  17. Li NC, Martin CR (2001) A high-rate, high-capacity, nanostructured Sn-based anode prepared using sol-gel template synthesis. J Electrochem Soc 148(2):A164–A170. doi:10.1149/1.1342167

    Article  Google Scholar 

  18. Fan ZJ, Yan J, Wei T, Ning GQ, Zhi LJ, Liu JC, Cao DX, Wang GL, Wei F (2011) Nanographene-constructed carbon nanofibers grown on graphene sheets by chemical vapor deposition: high-performance anode materials for lithium ion batteries. ACS Nano 5(4):2787–2794. doi:10.1021/nn200195k

    Article  Google Scholar 

  19. Meier C, Welland ME (2011) Wet-spinning of amyloid protein nanofibers into multifunctional high-performance biofibers. Biomacromolecules 12(10):3453–3459. doi:10.1021/bm2005752

    Article  Google Scholar 

  20. Zhang XW, Lu Y (2014) Centrifugal spinning: an alternative approach to fabricate nanofibers at high speed and low cost. Polym Rev 54(4):677–701. doi:10.1080/15583724.2014.935858

    Article  Google Scholar 

  21. Weng BC, Xu FH, Alcoutlabi M, Mao YB, Lozano K (2015) Fibrous cellulose membrane mass produced via forcespinning for lithium-ion battery separators. Cellulose 22(2):1311–1320. doi:10.1007/s10570-015-0564-8

    Article  Google Scholar 

  22. Agubra VA, Zuniga L, De la Garza D, Gallegos L, Pokhrel M, Alcoutlabi M (2016) Forcespinning: a new method for the mass production of Sn/C composite nanofiber anodes for lithium ion batteries. Solid State Ionics 286:72–82. doi:10.1016/jssi.2015.12.020

    Article  Google Scholar 

  23. Zander NE (2015) Formation of melt and solution spun polycaprolactone fibers by centrifugal spinning. J Appl Polym Sci 132(2):41269. doi:10.1002/App.41269

    Article  Google Scholar 

  24. O’Haire T, Russell SJ, Carr CM (2016) Centrifugal melt spinning of polyvinylpyrrolidone (PVP)/triacontene copolymer fibres. J Mater Sci 51(16):7512–7522. doi:10.1007/s10853-016-0030-5

    Article  Google Scholar 

  25. Inagaki M, Yang Y, Kang F (2012) Carbon nanofibers prepared via electrospinning. Adv Mater 24(19):2547–2566. doi:10.1002/adma.201104940

    Article  Google Scholar 

  26. Kalluri S, Seng KH, Guo ZP, Liu HK, Dou SX (2013) Electrospun lithium metal oxide cathode materials for lithium-ion batteries. RSC Adv 3(48):25576–25601. doi:10.1039/c3ra45414b

    Article  Google Scholar 

  27. Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16(14):1151–1170. doi:10.1002/adma.200400719

    Article  Google Scholar 

  28. Formhals A, Formhals A (1934) Process and apparatus for preparing artificial threads. U S Patent

  29. Taylor G (1969) Electrically driven jets. Proc R Soc A 313(1515):453–475. doi:10.1098/rspa.1969.0205

    Article  Google Scholar 

  30. Kong CS, Lee TH, Lee SH, Kim HS (2007) Nano-web formation by the electrospinning at various electric fields. J Mater Sci 42(19):8106–8112. doi:10.1007/s10853-007-1734-3

    Article  Google Scholar 

  31. Shawon J, Sung C (2004) Electrospinning of polycarbonate nanofibers with solvent mixtures THF and DMF. J Mater Sci 39(14):4605–4613. doi:10.1023/B:JMSC.0000034155.93428.ea

    Article  Google Scholar 

  32. Li D, Wang J, Dong X, Yu W, Liu G (2013) Fabrication and luminescence properties of YF3:Eu3+ hollow nanofibers via coaxial electrospinning combined with fluorination technique. J Mater Sci 48(17):5930–5937. doi:10.1007/s10853-013-7388-4

    Article  Google Scholar 

  33. De Vrieze S, Van Camp T, Nelvig A, Hagström B, Westbroek P, De Clerck K (2008) The effect of temperature and humidity on electrospinning. J Mater Sci 44(5):1357–1362. doi:10.1007/s10853-008-3010-6

    Article  Google Scholar 

  34. De Schoenmaker B, Van der Schueren L, Zugle R, Goethals A, Westbroek P, Kiekens P, Nyokong T, De Clerck K (2012) Effect of the relative humidity on the fibre morphology of polyamide 4.6 and polyamide 6.9 nanofibres. J Mater Sci 48(4):1746–1754. doi:10.1007/s10853-012-6934-9

    Article  Google Scholar 

  35. De Schoenmaker B, Goethals A, Van der Schueren L, Rahier H, De Clerck K (2012) Polyamide 6.9 nanofibres electrospun under steady state conditions from a solvent/non-solvent solution. J Mater Sci 47(9):4118–4126. doi:10.1007/s10853-012-6266-9

    Article  Google Scholar 

  36. Matabola KP, Moutloali RM (2013) The influence of electrospinning parameters on the morphology and diameter of poly(vinyledene fluoride) nanofibers—effect of sodium chloride. J Mater Sci 48(16):5475–5482. doi:10.1007/s10853-013-7341-6

    Article  Google Scholar 

  37. Jung JW, Lee CL, Yu S, Kim ID (2016) Electrospun nanofibers as a platform for advanced secondary batteries: a comprehensive review. J Mater Chem A 4(3):703–750. doi:10.1039/c5ta06844d

    Article  Google Scholar 

  38. Jalvandi J, White M, Truong YB, Gao Y, Padhye R, Kyratzis IL (2015) Release and antimicrobial activity of levofloxacin from composite mats of poly(ɛ-caprolactone) and mesoporous silica nanoparticles fabricated by core–shell electrospinning. J Mater Sci 50(24):7967–7974. doi:10.1007/s10853-015-9361-x

    Article  Google Scholar 

  39. Pampal ES, Stojanovska E, Simon B, Kilic A (2015) A review of nanofibrous structures in lithium ion batteries. J Power Sources 300:199–215. doi:10.1016/j.jpowsour.2015.09.059

    Article  Google Scholar 

  40. Khalil A, Lalia BS, Hashaikeh R (2016) Nickel oxide nanocrystals as a lithium-ion battery anode: structure-performance relationship. J Mater Sci 51(14):6624–6638. doi:10.1007/s10853-016-9946-z

    Article  Google Scholar 

  41. Qiu Y, Geng Y, Yu J, Zuo X (2013) High-capacity cathode for lithium-ion battery from LiFePO4/(C + Fe2P) composite nanofibers by electrospinning. J Mater Sci 49(2):504–509. doi:10.1007/s10853-013-7727-5

    Article  Google Scholar 

  42. Sandhya CP, John B, Gouri C (2013) Synthesis and electrochemical characterisation of electrospun lithium titanate ultrafine fibres. J Mater Sci 48(17):5827–5832. doi:10.1007/s10853-013-7375-9

    Article  Google Scholar 

  43. Gao C, Li X, Lu B, Chen L, Wang Y, Teng F, Wang J, Zhang Z, Pan X, Xie E (2012) A facile method to prepare SnO2 nanotubes for use in efficient SnO2–TiO2 core–shell dye-sensitized solar cells. Nanoscale 4(11):3475–3481. doi:10.1039/c2nr30349c

    Article  Google Scholar 

  44. Yang T, Lu B (2014) Highly porous structure strategy to improve the SnO2 electrode performance for lithium-ion batteries. Phys Chem Chem Phys 16(9):4115–4121. doi:10.1039/c3cp54144d

    Article  Google Scholar 

  45. Kundu M, Liu LF (2015) Binder-free electrodes consisting of porous NiO nanofibers directly electrospun on nickel foam for high-rate supercapacitors. Mater Lett 144:114–118. doi:10.1016/j.matlet.2015.01.032

    Article  Google Scholar 

  46. Wang B, Cheng JL, Wu YP, Wang D, He DN (2012) Porous NiO fibers prepared by electrospinning as high performance anode materials for lithium ion batteries. Electrochem Commun 23:5–8. doi:10.1016/j.elecom.2012.07.003

    Article  Google Scholar 

  47. Aravindan V, Kumar PS, Sundaramurthy J, Ling WC, Ramakrishna S, Madhavi S (2013) Electrospun NiO nanofibers as high performance anode material for Li-ion batteries. J Power Sources 227:284–290. doi:10.1016/j.jpowsour.2012.11.050

    Article  Google Scholar 

  48. Qiao L, Wang X, Qiao L, Sun X, Li X, Zheng Y, He D (2013) Single electrospun porous NiO–ZnO hybrid nanofibers as anode materials for advanced lithium-ion batteries. Nanoscale 5(7):3037–3042. doi:10.1039/c3nr34103h

    Article  Google Scholar 

  49. Wang HG, Zhou YQ, Shen Y, Li YH, Zuo QH, Duan Q (2015) Fabrication, formation mechanism and the application in lithium-ion battery of porous Fe2O3 nanotubes via single-spinneret electrospinning. Electrochim Acta 158:105–112. doi:10.1016/j.electacta.2015.01.149

    Article  Google Scholar 

  50. Cui ZT, Wang SG, Zhang YH, Cao MH (2015) High-performance lithium storage of Co3O4 achieved by constructing porous nanotube structure. Electrochim Acta 182:507–515. doi:10.1016/j.electacta.2015.09.120

    Article  Google Scholar 

  51. Wang Y, Takahashi K, Lee K, Cao GZ (2006) Nanostructured vanadium oxide electrodes for enhanced lithium-ion intercalation. Adv Funct Mater 16(9):1133–1144. doi:10.1002/adfm.200500662

    Article  Google Scholar 

  52. Zhai T, Liu H, Li H, Fang X, Liao M, Li L, Zhou H, Koide Y, Bando Y, Golberg D (2010) Centimeter-long V2O5 nanowires: from synthesis to field-emission, electrochemical, electrical transport, and photoconductive properties. Adv Mater 22(23):2547–2552. doi:10.1002/adma.200903586

    Article  Google Scholar 

  53. Cheah YL, Gupta N, Pramana SS, Aravindan V, Wee G, Srinivasan M (2011) Morphology, structure and electrochemical properties of single phase electrospun vanadium pentoxide nanofibers for lithium ion batteries. J Power Sources 196(15):6465–6472. doi:10.1016/j.jpowsour.2011.03.039

    Article  Google Scholar 

  54. Wang HG, Ma DL, Huang Y, Zhang XB (2012) Electrospun V2O5 nanostructures with controllable morphology as high-performance cathode materials for lithium-ion batteries. Chem Eur J 18(29):8987–8993. doi:10.1002/chem.201200434

    Article  Google Scholar 

  55. Yu DM, Chen CG, Xie SH, Liu YY, Park K, Zhou XY, Zhang QF, Li JY, Cao GZ (2011) Mesoporous vanadium pentoxide nanofibers with significantly enhanced Li-ion storage properties by electrospinning. Energy Environ Sci 4(3):858–861. doi:10.1039/c0ee00313a

    Article  Google Scholar 

  56. Lee DJ, Lee H, Ryou MH, Han GB, Lee JN, Song J, Choi J, Cho KY, Lee YM, Park JK (2013) Electrospun three-dimensional mesoporous silicon nanofibers as an anode material for high-performance lithium secondary batteries. ACS Appl Mater Interfaces 5(22):12005–12010. doi:10.1021/am403798a

    Article  Google Scholar 

  57. Yoo JK, Kim J, Lee H, Choi J, Choi MJ, Sim DM, Jung YS, Kang K (2013) Porous silicon nanowires for lithium rechargeable batteries. Nanotechnology 24(42):424008. doi:10.1088/0957-4484/24/42/424008

    Article  Google Scholar 

  58. Teh PF, Sharma Y, Pramana SS, Srinivasan M (2011) Nanoweb anodes composed of one-dimensional, high aspect ratio, size tunable electrospun ZnFe2O4 nanofibers for lithium ion batteries. J Mater Chem 21(38):14999–15008. doi:10.1039/c1jm12088c

    Article  Google Scholar 

  59. Luo W, Hu XL, Sun YM, Huang YH (2012) Electrospun porous ZnCo2O4 nanotubes as a high-performance anode material for lithium-ion batteries. J Mater Chem 22(18):8916–8921. doi:10.1039/c2jm00094f

    Article  Google Scholar 

  60. Yang GR, Xu X, Yan W, Yang HH, Ding SJ (2014) Facile synthesis of interwoven ZnMn2O4 nanofibers by electrospinning and their performance in Li-ion batteries. Mater Lett 128:336–339. doi:10.1016/j.matlet.2014.04.157

    Article  Google Scholar 

  61. Cherian CT, Sundaramurthy J, Reddy MV, Suresh Kumar P, Mani K, Pliszka D, Sow CH, Ramakrishna S, Chowdari BV (2013) Morphologically robust NiFe2O4 nanofibers as high capacity Li-ion battery anode material. ACS Appl Mater Interfaces 5(20):9957–9963. doi:10.1021/am401779p

    Article  Google Scholar 

  62. Wang L, Xiao QZ, Li ZH, Lei GT, Zhang P, Wu LJ (2012) Synthesis of Li4Ti5O12 fibers as a high-rate electrode material for lithium-ion batteries. J Solid State Electrochem 16(10):3307–3313. doi:10.1007/s10008-012-1776-6

    Article  Google Scholar 

  63. Xu HH, Shu J, Hu XL, Sun YM, Luo W, Huang YH (2013) Electrospun porous LiNb3O8 nanofibers with enhanced lithium-storage properties. J Mater Chem A 1(47):15053–15059. doi:10.1039/c3ta13386a

    Article  Google Scholar 

  64. Li L, Peng S, Wang J, Cheah YL, Teh P, Ko Y, Wong C, Srinivasan M (2012) Facile approach to prepare porous CaSnO3 nanotubes via a single spinneret electrospinning technique as anodes for lithium ion batteries. ACS Appl Mater Interfaces 4(11):6005–6012. doi:10.1021/am301664e

    Article  Google Scholar 

  65. Niu C, Meng J, Wang X, Han C, Yan M, Zhao K, Xu X, Ren W, Zhao Y, Xu L, Zhang Q, Zhao D, Mai L (2015) General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis. Nat Commun 6:7402. doi:10.1038/ncomms8402

    Article  Google Scholar 

  66. Wang Q, Chen D, Zhang D (2015) Electrospun porous CuCo2O4 nanowire network electrode for asymmetric supercapacitors. RSC Adv 5(117):96448–96454. doi:10.1039/c5ra21170k

    Article  Google Scholar 

  67. Zhou G, Zhu J, Chen YJ, Mei L, Duan XC, Zhang GH, Chen LB, Wang TH, Lu BA (2014) Simple method for the preparation of highly porous ZnCo2O4 nanotubes with enhanced electrochemical property for supercapacitor. Electrochim Acta 123:450–455. doi:10.1016/j.electacta.2014.01.018

    Article  Google Scholar 

  68. Zhu JD, Lu Y, Chen C, Ge YQ, Jasper S, Leary JD, Li DW, Jiang MJ, Zhang XW (2016) Porous one-dimensional carbon/iron oxide composite for rechargeable lithium-ion batteries with high and stable capacity. J Alloys Compd 672:79–85. doi:10.1016/j.jallcom.2016.02.160

    Article  Google Scholar 

  69. Xu HH, Hu XL, Sun YM, Luo W, Chen CJ, Liu Y, Huang YH (2014) Highly porous Li4Ti5O12/C nanofibers for ultrafast electrochemical energy storage. Nano Energy 10:163–171. doi:10.1016/j.nanoen.2014.09.003

    Article  Google Scholar 

  70. Hwang SM, Lim YG, Kim JG, Heo YU, Lim JH, Yamauchi Y, Park MS, Kim YJ, Dou SX, Kim JH (2014) A case study on fibrous porous SnO2 anode for robust, high-capacity lithium-ion batteries. Nano Energy 10:53–62. doi:10.1016/j.nanoen.2014.08.020

    Article  Google Scholar 

  71. Li LM, Yin XM, Liu SA, Wang YG, Chen LB, Wang TH (2010) Electrospun porous SnO2 nanotubes as high capacity anode materials for lithium ion batteries. Electrochem Commun 12(10):1383–1386. doi:10.1016/j.elecom.2010.07.026

    Article  Google Scholar 

  72. Huang HM, Zhang SQ, Wang W, Wang C, Jie YU (2012) Fabrication of electrospun porous SnO2 nanofibers as anodes materials for lithium-ion batteries. Chem J Chin Univ 33(7):1619–1623. doi:10.3969/j.issn.0251-0790.2012.07.045

    Google Scholar 

  73. Lei DN, Qu BH, Lin HT, Wang TH (2015) Facile approach to prepare porous GeO2/SnO2 nanofibers via a single spinneret electrospinning technique as anodes for lithium-ion batteries. Ceram Int 41(8):10308–10313. doi:10.1016/j.ceramint.2015.04.085

    Article  Google Scholar 

  74. Sun X, Huang Y, Zong M, Wu H, Ding X (2015) Preparation of porous SnO2/ZnO nanotubes via a single spinneret electrospinning technique as anodes for lithium ion batteries. J Mater Sci: Mater Electron 27(3):2682–2686. doi:10.1007/s10854-015-4077-x

    Google Scholar 

  75. Jayaraman S, Aravindan V, Suresh Kumar P, Ling WC, Ramakrishna S, Madhavi S (2013) Synthesis of porous LiMn2O4 hollow nanofibers by electrospinning with extraordinary lithium storage properties. Chem Commun 49(59):6677–6679. doi:10.1039/c3cc43874k

    Article  Google Scholar 

  76. Zhou H, Ding X, Liu G, Gao Z, Xu G, Wang X (2015) Characterization of cathode from LiNi X Mn2−X O4 nanofibers by electrospinning for Li-ion batteries. RSC Adv 5(130):108007–108014. doi:10.1039/C5RA21884E

    Article  Google Scholar 

  77. Li PF, Zhang JK, Yu QL, Qiao JS, Wang ZH, Rooney D, Sun W, Sun KN (2015) One-dimensional porous La0.5Sr0.5CoO2.91 nanotubes as a highly efficient electrocatalyst for rechargeable lithium-oxygen batteries. Electrochim Acta 165:78–84. doi:10.1016/j.electacta.2015.03.005

    Article  Google Scholar 

  78. Li L, Shen L, Nie P, Pang G, Wang J, Li H, Dong S, Zhang X (2015) Porous NiCo2O4 nanotubes as noble metal-free effective bifunctional catalysts for rechargeable Li–O2 batteries. J Mater Chem A 3(48):24309–24314. doi:10.1039/C5TA07856C

    Article  Google Scholar 

  79. Jo E, Yeo JG, Kim DK, Oh JS, Hong CK (2014) Preparation of well-controlled porous carbon nanofiber materials by varying the compatibility of polymer blends. Polym Int 63(8):1471–1477. doi:10.1002/pi.4645

    Article  Google Scholar 

  80. Jing LI, Qiao H, Wei QF (2011) Porous carbon nanofibers prepared by electrospinning technique. Battery Bimonthly 41(3):132–134

    Google Scholar 

  81. Wei K, Kim KO, Song KH, Kang CY, Lee JS, Gopiraman M, Kim IS (2016) Nitrogen- and oxygen-containing porous ultrafine carbon nanofiber: a highly flexible electrode material for supercapacitor. J Mater Sci Technol. doi:10.1016/j.jmst.2016.03.014

    Google Scholar 

  82. Peng YT, Lo CT (2015) Electrospun porous carbon nanofibers as lithium ion battery anodes. J Solid State Electrochem 19(11):3401–3410. doi:10.1007/s10008-015-2976-7

    Article  Google Scholar 

  83. Kim C, Jeong YI, Ngoc BT, Yang KS, Kojima M, Kim YA, Endo M, Lee JW (2007) Synthesis and characterization of porous carbon nanofibers with hollow cores through the thermal treatment of electrospun copolymeric nanofiber webs. Small 3(1):91–95. doi:10.1002/smll.200600243

    Article  Google Scholar 

  84. Kim BH, Yang KS, Ferraris JP (2012) Highly conductive, mesoporous carbon nanofiber web as electrode material for high-performance supercapacitors. Electrochim Acta 75:325–331. doi:10.1016/j.electacta.2012.05.004

    Article  Google Scholar 

  85. Lai CC, Lo CT (2015) Preparation of nanostructural carbon nanofibers and their electrochemical performance for supercapacitors. Electrochim Acta 183:85–93. doi:10.1016/j.electacta.2015.02.143

    Article  Google Scholar 

  86. Wang Q, Cao Q, Wang XY, Jing B, Kuang H, Zhou L (2013) Dual template method to prepare hierarchical porous carbon nanofibers for high-power supercapacitors. J Solid State Electrochem 17(10):2731–2739. doi:10.1007/s10008-013-2166-4

    Article  Google Scholar 

  87. Park GS, Lee JS, Kim ST, Park S, Cho J (2013) Porous nitrogen doped carbon fiber with churros morphology derived from electrospun bicomponent polymer as highly efficient electrocatalyst for Zn–air batteries. J Power Sources 243:267–273. doi:10.1016/j.jpowsour.2013.06.025

    Article  Google Scholar 

  88. Qin XY, Zhang HR, Wu JX, Chu XD, He YB, Han CP, Miao C, Wang SA, Li BH, Kang FY (2015) Fe3O4 nanoparticles encapsulated in electrospun porous carbon fibers with a compact shell as high-performance anode for lithium ion batteries. Carbon 87:347–356. doi:10.1016/j.carbon.2015.02.044

    Article  Google Scholar 

  89. Zeng Y, Li X, Jiang S, He S, Fang H, Hou H (2015) Free-standing mesoporous electrospun carbon nanofiber webs without activation and their electrochemical performance. Mater Lett 161:587–590. doi:10.1016/j.matlet.2015.08.154

    Article  Google Scholar 

  90. Zhang LJ, Han LL, Liu S, Zhang C, Liu SX (2015) High-performance supercapacitors based on electrospun multichannel carbon nanofibers. RSC Adv 5(130):107313–107317. doi:10.1039/c5ra23338k

    Article  Google Scholar 

  91. Ji L, Zhang X (2009) Fabrication of porous carbon nanofibers and their application as anode materials for rechargeable lithium-ion batteries. Nanotechnology 20(15):155705. doi:10.1088/0957-4484/20/15/155705

    Article  Google Scholar 

  92. Yang Y, Centrone A, Chen L, Simeon F, Hatton TA, Rutledge GC (2011) Highly porous electrospun polyvinylidene fluoride (PVDF)-based carbon fiber. Carbon 49(11):3395–3403. doi:10.1016/j.carbon.2011.04.015

    Article  Google Scholar 

  93. Tran C, Kalra V (2013) Fabrication of porous carbon nanofibers with adjustable pore sizes as electrodes for supercapacitors. J Power Sources 235:289–296. doi:10.1016/j.jpowsour.2013.01.080

    Article  Google Scholar 

  94. Li W, Zeng L, Yang Z, Gu L, Wang J, Liu X, Cheng J, Yu Y (2014) Free-standing and binder-free sodium-ion electrodes with ultralong cycle life and high rate performance based on porous carbon nanofibers. Nanoscale 6(2):693–698. doi:10.1039/c3nr05022j

    Article  Google Scholar 

  95. Huang K, Yao Y, Yang X, Chen Z, Li M (2016) Fabrication of flexible hierarchical porous nitrogen-doped carbon nanofiber films for application in binder-free supercapacitors. Mater Chem Phys 169:1–5. doi:10.1016/j.matchemphys.2015.11.024

    Article  Google Scholar 

  96. Kim BH, Yang KS, Woo HG (2012) Physical and electrochemical studies of polyphenylsilane-derived porous carbon nanofibers produced via electrospinning. Electrochim Acta 59:202–206. doi:10.1016/j.electacta.2011.10.057

    Article  Google Scholar 

  97. Kim BH, Yang KS, Woo HG, Oshida K (2011) Supercapacitor performance of porous carbon nanofiber composites prepared by electrospinning polymethylhydrosiloxane (PMHS)/polyacrylonitrile (PAN) blend solutions. Synth Met 161(13–14):1211–1216. doi:10.1016/j.synthmet.2011.04.005

    Article  Google Scholar 

  98. Zhang ZY, Li XH, Wang CH, Fu SW, Liu YC, Shao CL (2009) Polyacrylonitrile and carbon nanofibers with controllable nanoporous structures by electrospinning. Macromol Mater Eng 294(10):673–678. doi:10.1002/mame.200900076

    Article  Google Scholar 

  99. Lee BS, Son SB, Park KM, Lee G, Oh KH, Lee SH, Yu WR (2012) Effect of pores in hollow carbon nanofibers on their negative electrode properties for a lithium rechargeable battery. ACS Appl Mater Interfaces 4(12):6702–6710. doi:10.1021/am301873d

    Article  Google Scholar 

  100. Tang X, Wei YH, Zhang HN, Yan FL, Zhuo M, Chen CM, Xiao PY, Liang JJ, Zhang M (2015) The positive influence of graphene on the mechanical and electrochemical properties of Sn X Sb-graphene-carbon porous mats as binder-free electrodes for Li+ storage. Electrochim Acta 186:223–230. doi:10.1016/j.electacta.2015.10.170

    Article  Google Scholar 

  101. Chen C, Fu K, Lu Y, Zhu J, Xue L, Hu Y, Zhang X (2015) Use of a tin antimony alloy-filled porous carbon nanofiber composite as an anode in sodium-ion batteries. RSC Adv 5(39):30793–30800. doi:10.1039/C5RA01729G

    Article  Google Scholar 

  102. Li X, Chen Y, Zhou L, Mai Y-W, Huang H (2014) Exceptional electrochemical performance of porous TiO2-carbon nanofibers for lithium ion battery anodes. J Mater Chem A 2(11):3875–3880. doi:10.1039/c3ta14646d

    Article  Google Scholar 

  103. Yang XJ, Teng DH, Liu BX, Yu YH, Yang XP (2011) Nanosized anatase titanium dioxide loaded porous carbon nanofiber webs as anode materials for lithium-ion batteries. Electrochem Commun 13(10):1098–1101. doi:10.1016/j.elecom.2011.07.007

    Article  Google Scholar 

  104. Yang KS, Kim CH, Kim BH (2015) Preparation and electrochemical properties of RuO2-containing activated carbon nanofiber composites with hollow cores. Electrochim Acta 174:290–296. doi:10.1016/j.electacta.2015.05.176

    Article  Google Scholar 

  105. Yang KS, Kim BH (2015) Highly conductive, porous RuO2/activated carbon nanofiber composites containing graphene for electrochemical capacitor electrodes. Electrochim Acta 186:337–344. doi:10.1016/j.electacta.2015.11.003

    Article  Google Scholar 

  106. Wu JX, Qin XY, Miao C, He YB, Liang GM, Zhou D, Liu M, Han CP, Li BH, Kang FY (2016) A honeycomb-cobweb inspired hierarchical core–shell structure design for electrospun silicon/carbon fibers as lithium-ion battery anodes. Carbon 98:582–591. doi:10.1016/j.carbon.2015.11.048

    Article  Google Scholar 

  107. Li XJ, Lei GT, Li ZH, Zhang Y, Xiao QZ (2014) Carbon-encapsulated Si nanoparticle composite nanofibers with porous structure as lithium-ion battery anodes. Solid State Ionics 261:111–116. doi:10.1016/j.ssi.2014.04.016

    Article  Google Scholar 

  108. Li WH, Yang ZZ, Jiang Y, Yu ZR, Gu L, Yu Y (2014) Crystalline red phosphorus incorporated with porous carbon nanofibers as flexible electrode for high performance lithium-ion batteries. Carbon 78:455–462. doi:10.1016/j.carbon.2014.07.026

    Article  Google Scholar 

  109. Yu Y, Gu L, Zhu CB, van Aken PA, Maier J (2009) Tin nanoparticles encapsulated in porous multichannel carbon microtubes: preparation by single-nozzle electrospinning and application as anode material for high-performance li-based batteries. J Am Chem Soc 131(44):15984–15985. doi:10.1021/ja906261c

    Article  Google Scholar 

  110. Meschini I, Nobili F, Mancini M, Marassi R, Tossici R, Savoini A, Focarete ML, Croce F (2013) High-performance Sn@carbon nanocomposite anode for lithium batteries. J Power Sources 226:241–248. doi:10.1016/j.jpowsour.2012.11.004

    Article  Google Scholar 

  111. Ji LW, Zhang XW (2010) Evaluation of Si/carbon composite nanofiber-based insertion anodes for new-generation rechargeable lithium-ion batteries. Energy Environ Sci 3(1):124–129. doi:10.1039/b912188a

    Article  Google Scholar 

  112. Ji LW, Zhang XW (2009) Fabrication of porous carbon/Si composite nanofibers as high-capacity battery electrodes. Electrochem Commun 11(6):1146–1149. doi:10.1016/j.elecom.2009.03.042

    Article  Google Scholar 

  113. Wang MS, Song WL, Wang J, Fan LZ (2015) Highly uniform silicon nanoparticle/porous carbon nanofiber hybrids towards free-standing high-performance anodes for lithium-ion batteries. Carbon 82:337–345. doi:10.1016/j.carbon.2014.10.078

    Article  Google Scholar 

  114. Dong Y, Lin HM, Zhou D, Niu H, Jin QM, Qu FY (2015) Synthesis of mesoporous graphitic carbon fibers with high performance for supercapacitor. Electrochim Acta 159:116–123. doi:10.1016/j.electacta.2015.01.152

    Article  Google Scholar 

  115. Ji LW, Lin Z, Medford AJ, Zhang XW (2009) Porous carbon nanofibers from electrospun polyacrylonitrile/SiO2 composites as an energy storage material. Carbon 47(14):3346–3354. doi:10.1016/j.carbon.2009.08.002

    Article  Google Scholar 

  116. Nan D, Wang JG, Huang ZH, Wang L, Shen WC, Kang FY (2013) Highly porous carbon nanofibers from electrospun polyimide/SiO2 hybrids as an improved anode for lithium-ion batteries. Electrochem Commun 34:52–55. doi:10.1016/j.elecom.2013.05.010

    Article  Google Scholar 

  117. Teng MM, Qiao JL, Li FT, Bera PK (2012) Electrospun mesoporous carbon nanofibers produced from phenolic resin and their use in the adsorption of large dye molecules. Carbon 50(8):2877–2886. doi:10.1016/j.carbon.2012.02.056

    Article  Google Scholar 

  118. An GH, Ahn HJ (2013) Activated porous carbon nanofibers using Sn segregation for high-performance electrochemical capacitors. Carbon 65:87–96. doi:10.1016/j.carbon.2013.08.002

    Article  Google Scholar 

  119. Liu ZY, Fu DY, Liu FF, Han GY, Liu CX, Chang YZ, Xiao YM, Li MY, Li SD (2014) Mesoporous carbon nanofibers with large cage-like pores activated by tin dioxide and their use in supercapacitor and catalyst support. Carbon 70:295–307. doi:10.1016/j.carbon.2014.01.011

    Article  Google Scholar 

  120. Cheng L, He JJ, Jin Y, Chen HY, Chen MH (2015) Single-walled carbon nanotube embedded porous carbon nanofiber with enhanced electrochemical capacitive performance. Mater Lett 144:123–126. doi:10.1016/j.matlet.2015.01.020

    Article  Google Scholar 

  121. Zhang XB, Chen MH, Zhang XG, Li QW (2010) Preparation of porous carbon nanofibers by electrospinning and their electrochemical capacitive behavior. Acta Phys Chim Sin 26(12):3169–3174. doi:10.3866/Pku.Whxb20101203

    Google Scholar 

  122. Ji LW, Zhang XW (2009) Generation of activated carbon nanofibers from electrospun polyacrylonitrile-zinc chloride composites for use as anodes in lithium-ion batteries. Electrochem Commun 11(3):684–687. doi:10.1016/j.elecom.2009.01.018

    Article  Google Scholar 

  123. Zhang B, Xu ZL, He YB, Abouali S, Garakani MA, Heidari EK, Kang FY, Kim JK (2014) Exceptional rate performance of functionalized carbon nanofiber anodes containing nanopores created by (Fe) sacrificial catalyst. Nano Energy 4:88–96. doi:10.1016/j.nanoen.2013.12.011

    Article  Google Scholar 

  124. Chen YM, Lu ZG, Zhou LM, Mai YW, Huang HT (2012) Triple-coaxial electrospun amorphous carbon nanotubes with hollow graphitic carbon nanospheres for high- performance Li ion batteries. Energy Environ Sci 5(7):7898–7902. doi:10.1039/c2ee22085g

    Article  Google Scholar 

  125. Chen Y, Li X, Park K, Song J, Hong J, Zhou L, Mai YW, Huang H, Goodenough JB (2013) Hollow carbon-nanotube/carbon-nanofiber hybrid anodes for Li-ion batteries. J Am Chem Soc 135(44):16280–16283. doi:10.1021/ja408421n

    Article  Google Scholar 

  126. Nagamine S, Matsumoto T, Hikima Y, Ohshima M (2016) Fabrication of porous carbon nanofibers by phosphate-assisted carbonization of electrospun poly(vinyl alcohol) nanofibers. Mater Res Bull 79:8–13. doi:10.1016/j.materresbull.2016.01.009

    Article  Google Scholar 

  127. Zhang LJ, Jiang YZ, Wang LW, Zhang C, Liu SX (2016) Hierarchical porous carbon nanofibers as binder-free electrode for high-performance supercapacitor. Electrochim Acta 196:189–196. doi:10.1016/j.electacta.2016.02.050

    Article  Google Scholar 

  128. Karthikeyan KK, Biji P (2016) A novel biphasic approach for direct fabrication of highly porous, flexible conducting carbon nanofiber mats from polyacrylonitrile (PAN)/NaHCO3 nanocomposite. Microporous Mesoporous Mater 224:372–383. doi:10.1016/j.micromeso.2015.12.055

    Article  Google Scholar 

  129. Liang QH, Ye L, Xu Q, Huang ZH, Kang FY, Yang QH (2015) Graphitic carbon nitride nanosheet-assisted preparation of N-enriched mesoporous carbon nanofibers with improved capacitive performance. Carbon 94:342–348. doi:10.1016/j.carbon.2015.07.001

    Article  Google Scholar 

  130. Zhou X, Wan LJ, Guo YG (2013) Electrospun silicon nanoparticle/porous carbon hybrid nanofibers for lithium-ion batteries. Small 9(16):2684–2688. doi:10.1002/smll.201202071

    Article  Google Scholar 

  131. Wang H, Lu X, Li L, Li B, Cao D, Wu Q, Li Z, Yang G, Guo B, Niu C (2016) Synthesis of SnO2 versus Sn crystals within N-doped porous carbon nanofibers via electrospinning towards high-performance lithium ion batteries. Nanoscale 8(14):7595–7603. doi:10.1039/c5nr09305h

    Article  Google Scholar 

  132. Zou L, Gan L, Lv RT, Wang MX, Huang ZH, Kang FY, Shen WC (2011) A film of porous carbon nanofibers that contain Sn/SnOx nanoparticles in the pores and its electrochemical performance as an anode material for lithium ion batteries. Carbon 49(1):89–95. doi:10.1016/j.carbon.2010.08.046

    Article  Google Scholar 

  133. Zhou D, Lin HM, Zhang F, Niu H, Cui LR, Wang Q, Qu FY (2015) Freestanding MnO2 nanoflakes/porous carbon nanofibers for high-performance flexible supercapacitor electrodes. Electrochim Acta 161:427–435. doi:10.1016/j.electacta.2015.02.085

    Article  Google Scholar 

  134. McCormac K, Byrd I, Brannen R, Seymour B, Li J, Wu J (2015) Preparation of porous Si and TiO2 nanofibres using a sulphur-templating method for lithium storage. Phys Status Solidi (a) 212(4):877–881. doi:10.1002/pssa.201431834

    Article  Google Scholar 

  135. Bognitzki M, Czado W, Frese T, Schaper A, Hellwig M, Steinhart M, Greiner A, Wendorff JH (2001) Nanostructured fibers via electrospinning. Adv Mater 13(1):70–72. doi:10.1002/1521-4095(200101)13:1<70:AID-ADMA70>3.0.CO;2-H

    Article  Google Scholar 

  136. Lin J, Ding B, Yu J (2010) Direct fabrication of highly nanoporous polystyrene fibers via electrospinning. ACS Appl Mater Interfaces 2(2):521–528. doi:10.1021/am900736h

    Article  Google Scholar 

  137. Dayal P, Liu J, Kumar S, Kyu T (2007) Experimental and theoretical investigations of porous structure formation in electrospun fibers. Macromolecules 40(21):7689–7694. doi:10.1021/ma0714181

    Article  Google Scholar 

  138. Li L, Jiang Z, Li MM, Li RS, Fang T (2014) Hierarchically structured PMMA fibers fabricated by electrospinning. RSC Adv 4(95):52973–52985. doi:10.1039/c4ra05385k

    Article  Google Scholar 

  139. Li Y, Lim CT, Kotaki M (2015) Study on structural and mechanical properties of porous PLA nanofibers electrospun by channel-based electrospinning system. Polymer 56:572–580. doi:10.1016/j.polymer.2014.10.073

    Article  Google Scholar 

  140. Zhao JH, Si N, Xu L, Tang XP, Song YH, Sun ZY (2016) Experimental and theoretical study on the electrospinning nanoporous fibers process. Mater Chem Phys 170:294–302. doi:10.1016/j.matchemphys.2015.12.054

    Article  Google Scholar 

  141. Casper CL, Stephens JS, Tassi NG, Chase DB, Rabolt JF (2004) Controlling surface morphology of electrospun polystyrene fibers: effect of humidity and molecular weight in the electrospinning process. Macromolecules 37(2):573–578. doi:10.1021/ma0351975

    Article  Google Scholar 

  142. Huang L, Cheng JL, Qu GX, Li XD, Hu Y, Ni W, Yuan DM, Zhang Y, Wang B (2015) Porous carbon nanofibers formed in situ by electrospinning with a volatile solvent additive into an ice water bath for lithium-sulfur batteries. RSC Adv 5(30):23749–23757. doi:10.1039/c4ra14680h

    Article  Google Scholar 

  143. Kongkhlang T, Kotaki M, Kousaka Y, Umemura T, Nakaya D, Chirachanchai S (2008) Electrospun polyoxymethylene: spinning conditions and its consequent nanoporous nanofiber. Macromolecules 41(13):4746–4752. doi:10.1021/ma800731r

    Article  Google Scholar 

  144. Fashandi H, Karimi M (2012) Pore formation in polystyrene fiber by superimposing temperature and relative humidity of electrospinning atmosphere. Polymer 53(25):5832–5849. doi:10.1016/j.polymer.2012.10.003

    Article  Google Scholar 

  145. Yu XL, Xiang HF, Long YH, Zhao N, Zhang XL, Xu JA (2010) Preparation of porous polyacrylonitrile fibers by electrospinning a ternary system of PAN/DMF/H2O. Mater Lett 64(22):2407–2409. doi:10.1016/j.matlet.2010.08.006

    Article  Google Scholar 

  146. Shen Z, Hu Y, Chen YL, Zhang XW, Wang KH, Chen RZ (2015) Tin nanoparticle-loaded porous carbon nanofiber composite anodes for high current lithium-ion batteries. J Power Sources 278:660–667. doi:10.1016/j.jpowsour.2014.12.106

    Article  Google Scholar 

  147. Kim C, Yang KS (2003) Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning. Appl Phys Lett 83(6):1216–1218. doi:10.1063/1.1599963

    Article  Google Scholar 

  148. Kim C, Choi Y-O, Lee W-J, Yang K-S (2004) Supercapacitor performances of activated carbon fiber webs prepared by electrospinning of PMDA-ODA poly(amic acid) solutions. Electrochim Acta 50(2–3):883–887. doi:10.1016/j.electacta.2004.02.072

    Article  Google Scholar 

  149. Kim C, Park S-H, Lee W-J, Yang K-S (2004) Characteristics of supercapaitor electrodes of PBI-based carbon nanofiber web prepared by electrospinning. Electrochim Acta 50(2–3):877–881. doi:10.1016/j.electacta.2004.02.071

    Article  Google Scholar 

  150. Kim C (2005) Electrochemical characterization of electrospun activated carbon nanofibres as an electrode in supercapacitors. J Power Sources 142(1–2):382–388. doi:10.1016/j.jpowsour.2004.11.013

    Article  Google Scholar 

  151. Kim BH, Yang KS, Yang DJ (2013) Electrochemical behavior of activated carbon nanofiber-vanadium pentoxide composites for double-layer capacitors. Electrochim Acta 109:859–865. doi:10.1016/j.electacta.2013.07.180

    Article  Google Scholar 

  152. Kim BH, Yang KS (2014) Enhanced electrical capacitance of tetraethyl orthosilicate-derived porous carbon nanofibers produced via electrospinning. J Electroanal Chem 714:92–96. doi:10.1016/j.jelechem.2013.12.019

    Article  Google Scholar 

  153. Nan D, Huang Z-H, Lv R, Yang L, Wang J-G, Shen W, Lin Y, Yu X, Ye L, Sun H, Kang F (2014) Nitrogen-enriched electrospun porous carbon nanofiber networks as high-performance free-standing electrode materials. J Mater Chem A 2(46):19678–19684. doi:10.1039/c4ta03868a

    Article  Google Scholar 

  154. Kim CH, Kim BH (2015) Zinc oxide/activated carbon nanofiber composites for high-performance supercapacitor electrodes. J Power Sources 274:512–520. doi:10.1016/j.jpowsour.2014.10.126

    Article  Google Scholar 

  155. Ra EJ, Raymundo-Pinero E, Lee YH, Beguin F (2009) High power supercapacitors using polyacrylonitrile-based carbon nanofiber paper. Carbon 47(13):2984–2992. doi:10.1016/j.carbon.2009.06.051

    Article  Google Scholar 

  156. Wang G, Pan C, Wang L, Dong Q, Yu C, Zhao Z, Qiu J (2012) Activated carbon nanofiber webs made by electrospinning for capacitive deionization. Electrochim Acta 69(5):65–70. doi:10.1016/j.electacta.2012.02.066

    Article  Google Scholar 

  157. Nie H, Xu C, Zhou W, Wu B, Li X, Liu T, Zhang H (2016) Free-standing thin webs of activated carbon nanofibers by electrospinning for rechargeable Li–O2 batteries. ACS Appl Mater Interfaces 8(3):1937–1942. doi:10.1021/acsami.5b10088

    Article  Google Scholar 

  158. Zhou ZP, Wu XF (2013) Graphene-beaded carbon nanofibers for use in supercapacitor electrodes: synthesis and electrochemical characterization. J Power Sources 222:410–416. doi:10.1016/j.jpowsour.2012.09.004

    Article  Google Scholar 

  159. Li WH, Li MS, Wang M, Zeng LC, Yu Y (2015) Electrospinning with partially carbonization in air: highly porous carbon nanofibers optimized for high-performance flexible lithium-ion batteries. Nano Energy 13:693–701. doi:10.1016/j.nanoen.2015.03.027

    Article  Google Scholar 

  160. Zhu S, Chen M, Sun J, Liu J, Wu T, Su H, Qu S, Xie Y, Wang S, Su X, Diao G (2016) Novel highly conductive ferroferric oxide/porous carbon nanofiber composites prepared by electrospinning as anode materials for high performance Li-ion batteries. RSC Adv 6(63):58529–58540. doi:10.1039/c6ra04090j

    Article  Google Scholar 

  161. Ma C, Li YJ, Shi JL, Song Y, Liu L (2014) High-performance supercapacitor electrodes based on porous flexible carbon nanofiber paper treated by surface chemical etching. Chem Eng J 249:216–225. doi:10.1016/j.cej.2014.03.083

    Article  Google Scholar 

  162. Kim C, Ngoc BTN, Yang KS, Kojima M, Kim YA, Kim YJ, Endo M, Yang SC (2007) Self-sustained thin webs consisting of porous carbon nanofibers for supercapacitors via the electrospinning of polyacrylonitrile solutions containing zinc chloride. Adv Mater 19(17):2341–2346. doi:10.1002/adma.200602184

    Article  Google Scholar 

  163. Jing LI, Lai YQ, Zhao XD, Peng RF, Liu YX (2011) Electrochemical performance of carbon electrode materials prepared by different activated methods. J Southwest Univ Sci Technol 1:004

    Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial support from the National Natural Science Foundation of China (Grant No. 20971037). The Key Project of He’nan Educational Committee (14A150005), the Program for Innovative Research Team from the University of Henan Province (16IRTSTHN015) and the Henan Key Scientific and Technological Project (152102210056).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ji-wei Zhang or Jing-wei Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Zhang, Jw., Yu, Lg. et al. Electrospun porous nanofibers for electrochemical energy storage. J Mater Sci 52, 6173–6195 (2017). https://doi.org/10.1007/s10853-017-0794-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0794-2

Keywords

Navigation