Skip to main content

Electrospun Nanofibers for Design and Fabrication of Electrocatalysts and Electrolyte Membranes for Fuel cells

  • Chapter
  • First Online:
Electrospun Nanofibers for Energy and Environmental Applications

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

In the past decades, in response to the energy needs of modern society and emerging ecological concerns, the pursuit of novel, low-cost, and environmentally friendly energy conversion and storage systems has raised significant interest. Among these systems, fuel cells have gained much attention for their high efficiency and high power density, with low greenhouse gas emission. As one of the most promising and versatile fabrication methods for one-dimensional mesostructured nanomaterials composed of organic, inorganic, metallic, or hybrid components prepared as randomly or orientedly arranged continuous nanofibrous mats with possibilities of ordered internal morphologies such as core-sheath, hollow, or porous fibers, or even multichanneled microtubes, electrospinning has been widely investigated to fabricate electrocatalysts and electrolyte materials applied in fuel cells because of their dimensional, directional, and compositional flexibility. In this chapter, the application of electrospun nanofibers for the specific design and fabrication of different components is reviewed in detail. Particular progresses with the use of electrospun nanofibers on improved fuel cell performance, such as power density, ionic conductivity, interfacial resistance, and chemical stability, as well as mechanical strength are emphasized, which, as we hope, can trigger further development and evolution of fuel cells as one potential energy conversion device and system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mehta V, Cooper JS (2003) Review and analysis of PEM fuel cell design and manufacturing. J Power Sources 114(1):32–53

    Google Scholar 

  2. Liu HS, Song CJ, Zhang L, Zhang JJ, Wang HJ, Wilkinson DP (2006) A review of anode catalysis in the direct methanol fuel cell. J Power Sources 155(2):95–110

    Google Scholar 

  3. Yu Y, Li H, Wang HJ, Yuan XZ, Wang GJ, Pan M (2012) A review on performance degradation of proton exchange membrane fuel cells during startup and shutdown processes: causes, consequences, and mitigation strategies. J Power Sources 205:10–23

    Google Scholar 

  4. Zhang SS, Yuan XZ, Hin JNC, Wang HJ, Friedrich KA, Schulze M (2009) A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells. J Power Sources 194(2):588–600

    Google Scholar 

  5. Chandan A, Hattenberger M, El-Kharouf A, Du SF, Dhir A, Self V, Pollet BG, Ingram A, Bujalski W (2013) High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC) – a review. J Power Sources 231:264–278

    Google Scholar 

  6. Li XL, Faghri A (2013) Review and advances of direct methanol fuel cells (DMFCs) part I: Design, fabrication, and testing with high concentration methanol solutions. J Power Sources 226:223–240

    Google Scholar 

  7. Cavaliere S, Subianto S, Savych I, Jones DJ, Roziere J (2011) Electrospinning: designed architectures for energy conversion and storage devices. Energy Environ Sci 4(12):4761–4785

    Google Scholar 

  8. Dong ZX, Kennedy SJ, Wu YQ (2011) Electrospinning materials for energy-related applications and devices. J Power Sources 196(11):4886–4904

    Google Scholar 

  9. Szentivanyi AL, Zernetsch H, Menzel H, Glasmacher B (2011) A review of developments in electrospinning technology: new opportunities for the design of artificial tissue structures. Int J Artif Organs 34(10):986–997

    Google Scholar 

  10. Panda PK (2008) Ceramic nanofibers by electrospinning technique – a review. Trans Indian Ceram Soc 66(2):65–76

    Google Scholar 

  11. Debe MK (2012) Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486(7401):43–51

    Google Scholar 

  12. Kim YS, Nam SH, Shim HS, Ahn HJ, Anand M, Kim WB (2008) Electrospun bimetallic nanowires of PtRh and PtRu with compositional variation for methanol electrooxidation. Electrochem Commun 10(7):1016–1019

    Google Scholar 

  13. Kim JM, Joh HI, Jo SM, Ahn DJ, Ha HY, Hong SA, Kim SK (2010) Preparation and characterization of Pt nanowire by electrospinning method for methanol oxidation. Electrochim Acta 55(16):4827–4835

    Google Scholar 

  14. Kim HJ, Kim YS, Seo MH, Choi SM, Cho J, Huber GW, Kim WB (2010) Highly improved oxygen reduction performance over Pt/C-dispersed nanowire network catalysts. Electrochem Commun 12(1):32–35

    Google Scholar 

  15. Shui JI, Chen C, Li JCM (2011) Evolution of nanoporous Pt-Fe alloy nanowires by dealloying and their catalytic property for oxygen reduction reaction. Adv Funct Mater 21(17): 3357–3362

    Google Scholar 

  16. Shui JL, Li JCM (2009) Platinum nanowires produced by electrospinning. Nano Lett 9(4):1307–1314

    Google Scholar 

  17. Su L, Jia WZ, Schempf A, Ding Y, Lei Y (2009) Free-standing palladium/polyamide 6 nanofibers for electrooxidation of alcohols in alkaline medium. J Phys Chem C 113(36):16174–16180

    Google Scholar 

  18. Kim HJ, Kim YS, Seo MH, Choi SM, Kim WB (2009) Pt and PtRh nanowire electrocatalysts for cyclohexane-fueled polymer electrolyte membrane fuel cell. Electrochem Commun 11(2):446–449

    Google Scholar 

  19. Li MY, Han GY, Yang BS (2008) Fabrication of the catalytic electrodes for methanol oxidation on electrospinning-derived carbon fibrous mats. Electrochem Commun 10(6): 880–883

    Google Scholar 

  20. Liu XM, Li MY, Han GY, Dong JH (2010) The catalysts supported on metallized electrospun polyacrylonitrile fibrous mats for methanol oxidation. Electrochim Acta 55(8):2983–2990

    Google Scholar 

  21. Lin Z, Ji LW, Krause WE, Zhang XW (2010) Synthesis and electrocatalysis of 1-aminopyrene-functionalized carbon nanofiber-supported platinum-ruthenium nanoparticles. J Power Sources 195(17):5520–5526

    Google Scholar 

  22. Lin Z, Ji LW, Zhang XW (2009) Electrocatalytic properties of Pt/carbon composite nanofibers. Electrochim Acta 54(27):7042–7047

    Google Scholar 

  23. Li MY, Zhao SZ, Han GY, Yang BS (2009) Electrospinning-derived carbon fibrous mats improving the performance of commercial Pt/C for methanol oxidation. J Power Sources 191(2):351–356

    Google Scholar 

  24. Formo E, Peng ZM, Lee E, Lu XM, Yang H, Xia YN (2008) Direct oxidation of methanol on pt nanostructures supported on electrospun nanofibers of anatase. J Phys Chem C 112(27):9970–9975

    Google Scholar 

  25. Long Q, Cai M, Li JR, Rong HL, Jiang L (2011) Improving the electrical catalytic activity of Pt/TiO2 nanocomposites by a combination of electrospinning and microwave irradiation. J Nanopart Res 13(4):1655–1662

    Google Scholar 

  26. Zhang YQ, Wang YZ, Jia JB, Wang JG (2012) Electro-oxidation of methanol based on electrospun PdO-Co3O4 nanofiber modified electrode. Int J Hydrog Energy 37(23): 17947–17953

    Google Scholar 

  27. Zhao ZG, Yao ZJ, Zhang J, Zhu R, Jin Y, Li QW (2012) Rational design of galvanically replaced Pt-anchored electrospun WO3 nanofibers as efficient electrode materials for methanol oxidation. J Mater Chem 22(32):16514–16519

    Google Scholar 

  28. Park JH, Ju YW, Park SH, Jung HR, Yang KS, Lee WJ (2009) Effects of electrospun polyacrylonitrile-based carbon nanofibers as catalyst support in PEMFC. J Appl Electrochem 39(8):1229–1236

    Google Scholar 

  29. Lin Z, Ji LW, Toprakci O, Krause W, Zhang XW (2010) Electrospun carbon nanofiber-supported Pt-Pd alloy composites for oxygen reduction. J Mater Res 25(7):1329–1335

    Google Scholar 

  30. Bauer A, Lee K, Song CJ, Xie YS, Zhang JJ, Hui R (2010) Pt nanoparticles deposited on TiO2 based nanofibers: electrochemical stability and oxygen reduction activity. J Power Sources 195(10):3105–3110

    Google Scholar 

  31. Garcia-Marquez A, Portehault D, Giordano C (2011) Chromium nitride and carbide nanofibers: from composites to mesostructures. J Mater Chem 21(7):2136–2143

    Google Scholar 

  32. Park KW, Seol KS (2007) Nb-TiO2 supported Pt cathode catalyst for polymer electrolyte membrane fuel cells. Electrochem Commun 9(9):2256–2260

    Google Scholar 

  33. Su L, Jia WZ, Schempf A, Lei Y (2009) Palladium/titanium dioxide nanofibers for glycerol electrooxidation in alkaline medium. Electrochem Commun 11(11):2199–2202

    Google Scholar 

  34. Huang JS, Hou HQ, You TY (2009) Highly efficient electrocatalytic oxidation of formic acid by electrospun carbon nanofiber-supported PtxAu100-x bimetallic electrocatalyst. Electrochem Commun 11(6):1281–1284

    Google Scholar 

  35. Li LP, Zhang PG, Liu RR, Guo SM (2011) Preparation of fibrous Ni-coated-YSZ anodes for solid oxide fuel cells. J Power Sources 196(3):1242–1247

    Google Scholar 

  36. Uhm S, Jeong B, Lee J (2011) A facile route for preparation of non-noble CNF cathode catalysts in alkaline ethanol fuel cells. Electrochim Acta 56(25):9186–9190

    Google Scholar 

  37. Chen SL, Hou HQ, Harnisch F, Patil SA, Carmona-Martinez AA, Agarwal S, Zhang YY, Sinha-Ray S, Yarin AL, Greiner A, Schroder U (2011) Electrospun and solution blown three-dimensional carbon fiber nonwovens for application as electrodes in microbial fuel cells. Energy Environ Sci 4(4):1417–1421

    Google Scholar 

  38. Hong SH, Lee SA, Nam JD, Lee YK, Kim TS, Won S (2008) Platinum-catalyzed and ion-selective polystyrene fibrous membrane by electrospinning and in-situ metallization techniques. Macromol Res 16(3):204–211

    Google Scholar 

  39. Lee JR, Kim NY, Lee MS, Lee SY (2011) SiO2-coated polyimide nonwoven/Nafion composite membranes for proton exchange membrane fuel cells. J Membr Sci 367(1–2): 265–272

    Google Scholar 

  40. Liu L, Pu G, Viswanathan R, Fan QB, Liu RX, Smotkin ES (1998) Carbon supported and unsupported Pt-Ru anodes for liquid feed direct methanol fuel cells. Electrochim Acta 43(24):3657–3663

    Google Scholar 

  41. Arico AS, Shukla AK, El-Khatib KM, Creti P, Antonucci V (1999) Effect of carbon-supported and unsupported Pt-Ru anodes on the performance of solid-polymer-electrolyte direct methanol fuel cells. J Appl Electrochem 29(6):671–676

    Google Scholar 

  42. Nam JH, Jang YY, Kwon YU, Nam JD (2004) Direct methanol fuel cell Pt-carbon catalysts by using SBA-15 nanoporous templates. Electrochem Commun 6(7):737–741

    Google Scholar 

  43. Shukla AK, Raman RK, Choudhury NA, Priolkar KR, Sarode PR, Emura S, Kumashiro R (2004) Carbon-supported Pt-Fe alloy as a methanol-resistant oxygen-reduction catalyst for direct methanol fuel cells. J Electroanal Chem 563(2):181–190

    Google Scholar 

  44. Salgado JRC, Antolini E, Gonzalez ER (2005) Carbon supported Pt-Co alloys electrocatalysts for as methanol-resistant oxygen-reduction direct methanol fuel cells. Appl Catal B-Environ 57(4):283–290

    Google Scholar 

  45. Zeng JH, Lee JY, Zhou WJ (2006) A more active Pt/carbon DMFC catalyst by simple reversal of the mixing sequence in preparation. J Power Sources 159(1):509–513

    Google Scholar 

  46. De Jong KP, Geus JW (2000) Carbon nanofibers: catalytic synthesis and applications. Catal Rev-Sci Eng 42(4):481–510

    Google Scholar 

  47. Tian ZQ, Jiang SP, Liang YM, Shen PK (2006) Synthesis and characterization of platinum catalysts on muldwalled carbon nanotubes by intermittent microwave irradiation for fuel cell applications. J Phys Chem B 110(11):5343–5350

    Google Scholar 

  48. Chan KY, Ding J, Ren JW, Cheng SA, Tsang KY (2004) Supported mixed metal nanoparticles as electrocatalysts in low temperature fuel cells. J Mater Chem 14(4):505–516

    Google Scholar 

  49. Yang CW, Hu XG, Wang DL, Dai CS, Zhang L, Jin HB, Agathopoulos S (2006) Ultrasonically treated multi-walled carbon nanotubes (MWCNTs) as PtRu catalyst supports for methanol electrooxidation. J Power Sources 160(1):187–193

    Google Scholar 

  50. Jha N, Reddy ALM, Shaijumon MM, Rajalakshmi N, Ramaprabhu S (2008) Pt-Ru/multi-walled carbon nanotubes as electrocatalysts for direct methanol fuel cell. Int J Hydrog Energy 33(1):427–433

    Google Scholar 

  51. Yu RQ, Chen LW, Liu QP, Lin JY, Tan KL, Ng SC, Chan HSO, Xu GQ, Hor TSA (1998) Platinum deposition on carbon nanotubes via chemical modification. Chem Mater 10(3): 718–722

    Google Scholar 

  52. Steigerwalt ES, Deluga GA, Cliffel DE, Lukehart CM (2001) A Pt-Ru/graphitic carbon nanofiber nanocomposite exhibiting high relative performance as a direct-methanol fuel cell anode catalyst. J Phys Chem B 105(34):8097–8101

    Google Scholar 

  53. Guo J, Sun G, Wang Q, Wang G, Zhou Z, Tang S, Jiang L, Zhou B, Xin Q (2006) Carbon nanofibers supported Pt–Ru electrocatalysts for direct methanol fuel cells. Carbon 44(1): 152–157

    Google Scholar 

  54. Chen WX, Lee JY, Liu ZL (2002) Microwave-assisted synthesis of carbon supported Pt nanoparticles for fuel cell applications. Chem Commun 21:2588–2589

    Google Scholar 

  55. Liu ZL, Lee JY, Chen WX, Han M, Gan LM (2004) Physical and electrochemical characterizations of microwave-assisted polyol preparation of carbon-supported PtRu nanoparticles. Langmuir 20(1):181–187

    Google Scholar 

  56. Li X, Chen WX, Zhao J, Xing W, Xu ZD (2005) Microwave polyol synthesis of Pt/CNTs catalysts: effects of pH on particle size and electrocatalytic activity for methanol electrooxidization. Carbon 43(10):2168–2174

    Google Scholar 

  57. Liu ZL, Gan LM, Hong L, Chen WX, Lee JY (2005) Carbon-supported Pt nanoparticles as catalysts for proton exchange membrane fuel cells. J Power Sources 139(1–2):73–78

    Google Scholar 

  58. Tsuji M, Kubokawa M, Yano R, Miyamae N, Tsuji T, Jun MS, Hong S, Lim S, Yoon SH, Mochida I (2007) Fast preparation of PtRu catalysts supported on carbon nanofibers by the microwave-polyol method and their application to fuel cells. Langmuir 23(2):387–390

    Google Scholar 

  59. He ZB, Chen JH, Liu DY, Zhou HH, Kuang YF (2004) Electrodeposition of Pt-Ru nanoparticles on carbon nanotubes and their electrocatalytic properties for methanol electrooxidation. Diamond Relat Mater 13(10):1764–1770

    Google Scholar 

  60. Tang H, Chen JH, Yao SZ, Nie LH, Kuang YF, Huang ZP, Wang DZ, Ren ZF (2005) Deposition and electrocatalytic properties of platinum on well-aligned carbon nanotube (CNT) arrays for methanol oxidation. Mater Chem Phys 92(2–3):548–553

    Google Scholar 

  61. Chien CC, Jeng KT (2006) Effective preparation of carbon nanotube-supported Pt-Ru electrocatalysts. Mater Chem Phys 99(1):80–87

    Google Scholar 

  62. Wee JH, Lee KY, Kim SH (2007) Fabrication methods for low-Pt-loading electrocatalysts in proton exchange membrane fuel cell systems. J Power Sources 165(2):667–677

    Google Scholar 

  63. Rasheed A, Howe JY, Dadmun MD, Britt PF (2007) The efficiency of the oxidation of carbon nanofibers with various oxidizing agents. Carbon 45(5):1072–1080

    Google Scholar 

  64. Wang C, Waje M, Wang X, Tang JM, Haddon RC, Yan YS (2004) Proton exchange membrane fuel cells with carbon nanotube based electrodes. Nano Lett 4(2):345–348

    Google Scholar 

  65. Lin Z, Ji L, Zhang X (2009) Electrodeposition of platinum nanoparticles onto carbon nanofibers for electrocatalytic oxidation of methanol. Mater Lett 63:2115–2118

    Google Scholar 

  66. Liu FJ, Huang LM, Wen TC, Gopalan A (2007) Large-area network of polyaniline nanowires supported platinum nanocatalysts for methanol oxidation. Synth Met 157(16–17):651–658

    Google Scholar 

  67. Shanmugam S, Gedanken A (2009) Synthesis and electrochemical oxygen reduction of platinum nanoparticles supported on mesoporous TiO2. J Phys Chem C 113(43): 18707–18712

    Google Scholar 

  68. Gojkovic SL, Babic BM, Radmilovic VR, Krstajic NV (2010) Nb-doped TiO2 as a support of Pt and Pt-Ru anode catalyst for PEMFCs. J Electroanal Chem 639(1–2):161–166

    Google Scholar 

  69. Seger B, Kongkanand A, Vinodgopal K, Kamat PV (2008) Platinum dispersed on silica nanoparticle as electrocatalyst for PEM fuel cell. J Electroanal Chem 621(2):198–204

    Google Scholar 

  70. Elezovic NR, Babic BM, Radmilovic VR, Vracar LM, Krstajic NV (2009) Synthesis and characterization of MoOx-Pt/C and TiOx-Pt/C nano-catalysts for oxygen reduction. Electrochim Acta 54(9):2404–2409

    Google Scholar 

  71. Xiong L, Manthiram A (2004) Synthesis and characterization of methanol tolerant Pt/TiOx/C nanocomposites for oxygen reduction in direct methanol fuel cells. Electrochim Acta 49(24):4163–4170

    Google Scholar 

  72. Saha MS, Banis MN, Zhang Y, Li RY, Sun XL, Cai M, Wagner FT (2009) Tungsten oxide nanowires grown on carbon paper as Pt electrocatalyst support for high performance proton exchange membrane fuel cells. J Power Sources 192(2):330–335

    Google Scholar 

  73. Molla S, Compan V, Lafuente SL, Prats J (2011) On the methanol permeability through pristine Nafion (R) and Nafion/PVA membranes measured by different techniques. A comparison of methodologies. Fuel Cells 11(6):897–906

    Google Scholar 

  74. Molla S, Compan V, Gimenez E, Blazquez A, Urdanpilleta I (2011) Novel ultrathin composite membranes of Nafion/PVA for PEMFCs. Int J Hydrog Energy 36(16):9886–9895

    Google Scholar 

  75. Molla S, Compan V (2011) Polyvinyl alcohol nanofiber reinforced Nafion membranes for fuel cell applications. J Membr Sci 372(1–2):191–200

    Google Scholar 

  76. Molla S, Compan V (2011) Performance of composite Nafion/PVA membranes for direct methanol fuel cells. J Power Sources 196(5):2699–2708

    Google Scholar 

  77. Choi SW, Fu YZ, Ahn YR, Jo SM, Manthiram A (2008) Nafion-impregnated electrospun polyvinylidene fluoride composite membranes for direct methanol fuel cells. J Power Sources 180(1):167–171

    Google Scholar 

  78. Hasani-Sadrabadi MM, Shabani I, Soleimani M, Moaddel H (2011) Novel nanofiber-based triple-layer proton exchange membranes for fuel cell applications. J Power Sources 196(10):4599–4603

    Google Scholar 

  79. Yun SH, Woo JJ, Seo SJ, Wu LA, Wu D, Xu TW, Moon SH (2011) Sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO) electrolyte membranes reinforced by electrospun nanofiber porous substrates for fuel cells. J Membr Sci 367(1–2):296–305

    Google Scholar 

  80. Wu D, Wu L, Woo JJ, Yun SH, Seo SJ, Xu TW, Moon SH (2010) A simple heat treatment to prepare covalently crosslinked membranes from sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) for application in fuel cells. J Membr Sci 348(1–2):167–173

    Google Scholar 

  81. Lu PP, Xu ZL, Yang H, Wei YM (2012) Processing-structure-property correlations of polyethersulfone/perfluorosulfonic acid nanofibers fabricated via electrospinning from polymer-nanoparticle suspensions. ACS Appl Mater Interfaces 4(3):1716–1723

    Google Scholar 

  82. Ballengee JB, Pintauro PN (2011) Composite fuel cell membranes from dual-nanofiber electrospun mats. Macromolecules 44(18):7307–7314

    Google Scholar 

  83. Ballengee JB, Pintauro PN (2011) Morphological control of electrospun Nafion nanofiber mats. J Electrochem Soc 158(5):B568–B572

    Google Scholar 

  84. Seol JH, Won JH, Yoon KS, Hong YT, Lee SY (2012) SiO2 ceramic nanoporous substrate-reinforced sulfonated poly(arylene ether sulfone) composite membranes for proton exchange membrane fuel cells. Int J Hydrog Energy 37(7):6189–6198

    Google Scholar 

  85. Seol JH, Won JH, Lee MS, Yoon KS, Hong YT, Lee SY (2012) A proton conductive silicate-nanoencapsulated polyimide nonwoven as a novel porous substrate for a reinforced sulfonated poly(arylene ether sulfone) composite membrane. J Mater Chem 22(4):1634–1642

    Google Scholar 

  86. Li HY, Liu YL (2013) Polyelectrolyte composite membranes of polybenzimidazole and crosslinked polybenzimidazole-polybenzoxazine electrospun nanofibers for proton exchange membrane fuel cells. J Mater Chem A 1(4):1171–1178

    Google Scholar 

  87. Liu W, Wang SJ, Xiao M, Han DM, Meng YZ (2012) A proton exchange membrane fabricated from a chemically heterogeneous nonwoven with sandwich structure by the program-controlled co-electrospinning process. Chem Commun 48(28):3415–3417

    Google Scholar 

  88. Choi J, Wycisk R, Zhang WJ, Pintauro PN, Lee KM, Mather PT (2010) High conductivity perfluorosulfonic acid nanofiber composite fuel-cell membranes. ChemSusChem 3(11):1245–1248

    Google Scholar 

  89. Choi J, Lee KM, Wycisk R, Pintauro PN, Mather PT (2008) Nanofiber network ion-exchange membranes. Macromolecules 41(13):4569–4572

    Google Scholar 

  90. Choi J, Lee KM, Wycisk R, Pintauro PN, Mather PT (2010) Sulfonated polysulfone/POSS nanofiber composite membranes for PEM fuel cells. J Electrochem Soc 157(6):B914–B919

    Google Scholar 

  91. Choi J, Lee KM, Wycisk R, Pintauro PN, Mather PT (2010) Nanofiber composite membranes with low equivalent weight perfluorosulfonic acid polymers. J Mater Chem 20(30): 6282–6290

    Google Scholar 

  92. Lee C, Jo SM, Choi J, Baek KY, Truong YB, Kyratzis IL, Shul YG (2013) SiO2/sulfonated poly ether ether ketone (SPEEK) composite nanofiber mat supported proton exchange membranes for fuel cells. J Mater Sci 48(10):3665–3671

    Google Scholar 

  93. Dong B, Gwee L, Salas-de la Cruz D, Winey KI, Elabd YA (2010) Super proton conductive high-purity nafion nanofibers. Nano Lett 10(9):3785–3790

    Google Scholar 

  94. Chen H, Snyder JD, Elabd YA (2008) Electrospinning and solution properties of Nafion and poly(acrylic acid). Macromolecules 41(1):128–135

    Google Scholar 

  95. Subianto S, Cavaliere S, Jones DJ, Roziere J (2013) Effect of side-chain length on the electrospinning of perfluorosulfonic acid ionomers. J Polym Sci Part A-Polym Chem 51(1):118–128

    Google Scholar 

  96. Li XF, Hao XF, Xu D, Zhang G, Zhong SL, Na H, Wang DY (2006) Fabrication of sulfonated poly(ether ether ketone ketone) membranes with high proton conductivity. J Membr Sci 281(1–2):1–6

    Google Scholar 

  97. Yao YF, Guo BK, Ji LW, Jung KH, Lin Z, Alcoutlabi M, Hamouda H, Zhang XW (2011) Highly proton conductive electrolyte membranes: fiber-induced long-range ionic channels. Electrochem Commun 13(9):1005–1008

    Google Scholar 

  98. Yao YF, Ji LW, Lin Z, Li Y, Alcoutlabi M, Hamouda H, Zhang XW (2011) Sulfonated polystyrene fiber network-induced hybrid proton exchange membranes. ACS Appl Mater Interfaces 3(9):3732–3737

    Google Scholar 

  99. Yao YF, Lin Z, Li Y, Alcoutlabi M, Hamouda H, Zhang XW (2011) Superacidic electrospun fiber-Nafion hybrid proton exchange membranes. Adv Energy Mater 1(6):1133–1140

    Google Scholar 

  100. Tamura T, Kawakami H (2010) Aligned electrospun nanofiber composite membranes for fuel cell electrolytes. Nano Lett 10(4):1324–1328

    Google Scholar 

  101. Yeager HL, Eisenberg A (1982) Perfluorinated ionomer membranes – introduction. ACS Symp Ser 180:1–6

    Google Scholar 

  102. Eikerling M, Kornyshev AA, Stimming U (1997) Electrophysical properties of polymer electrolyte membranes: a random network model. J Phys Chem B 101(50):10807–10820

    Google Scholar 

  103. Haubold HG, Vad T, Jungbluth H, Hiller P (2001) Nano structure of NAFION: a SAXS study. Electrochim Acta 46(10–11):1559–1563

    Google Scholar 

  104. James PJ, McMaster TJ, Newton JM, Miles MJ (2000) In situ rehydration of perfluorosulphonate ion-exchange membrane studied by AFM. Polymer 41(11):4223–4231

    Google Scholar 

  105. Schmidt-Rohr K, Chen Q (2008) Parallel cylindrical water nanochannels in Nafion fuel-cell membranes. Nat Mater 7(1):75–83

    Google Scholar 

  106. Markovic Z, Jovanovic S, Kleut D, Romcevic N, Jokanovic V, Trajkovic V, Todorovic-Markovic B (2009) Comparative study on modification of single wall carbon nanotubes by sodium dodecylbenzene sulfonate and melamine sulfonate superplasticiser. Appl Surf Sci 255(12):6359–6366

    Google Scholar 

  107. Priya BR, Byrne HJ (2008) Investigation of sodium dodecyl benzene sulfonate assisted dispersion and debundling of single-wall carbon nanotubes. J Phys Chem C 112(2):332–337

    Google Scholar 

  108. Yameen B, Kaltbeitzel A, Glasser G, Langner A, Muller F, Gosele U, Knoll W, Azzaroni O (2010) Hybrid polymer-silicon proton conducting membranes via a pore-filling surface-initiated polymerization approach. ACS Appl Mater Interfaces 2(1):279–287

    Google Scholar 

  109. Yameen B, Kaltbeitzel A, Langer A, Muller F, Gosele U, Knoll W, Azzaroni O (2009) Highly proton-conducting self-humidifying microchannels generated by copolymer brushes on a scaffold. Angew Chem-Int Ed 48(17):3124–3128

    Google Scholar 

  110. Yameen B, Kaltbeitzel A, Langner A, Duran H, Muller F, Gosele U, Azzaroni O, Knoll W (2008) Facile large-scale fabrication of proton conducting channels. J Am Chem Soc 130(39):13140–13144

    Google Scholar 

  111. Wang H, Xu X, Johnson NM, Dandala NKR, Ji HF (2011) High proton conductivity of water channels in a highly ordered nanowire. Angew Chem-Int Ed 50(52):12538–12541

    Google Scholar 

  112. Park AM, Pintauro PN (2012) Alkaline fuel cell membranes from electrospun fiber mats. Electrochem Solid State Lett 15(3):B27–B30

    Google Scholar 

  113. Takemori R, Kawakami H (2010) Electrospun nanofibrous blend membranes for fuel cell electrolytes. J Power Sources 195(18):5957–5961

    Google Scholar 

  114. Bajon R, Balaji S, Guo SM (2009) Electrospun Nafion nanofiber for proton exchange membrane fuel cell application. J Fuel Cell Sci Technol 6(3)

    Google Scholar 

  115. Lei S, Chen DJ, Chen YQ (2011) A surface acoustic wave humidity sensor with high sensitivity based on electrospun MWCNT/Nafion nanofiber films. Nanotechnology 22(26)

    Google Scholar 

  116. Zhou CS, Liu Z, Dai JY, Xiao D (2010) Electrospun Ru(bpy)(3)(2+)-doped nafion nanofibers for electrochemiluminescence sensing. Analyst 135(5):1004–1009

    Google Scholar 

  117. Sebastian D, Calderon JC, Gonzalez-Exposito JA, Pastor E, Martinez-Huerta MV, Suelves I, Moliner R, Lazaro MJ (2010) Influence of carbon nanofiber properties as electrocatalyst support on the electrochemical performance for PEM fuel cells. Int J Hydrog Energy 35(18):9934–9942

    Google Scholar 

  118. Choi J, Lee KM, Wycisk R, Pintauro PN, Mather PT (2009) Nanofiber network ion-exchange membranes for PEM fuel cells. Abstr Pap Am Chem Soc 237

    Google Scholar 

  119. Collins G, Federici J, Imura Y, Catalani LH (2012) Charge generation, charge transport, and residual charge in the electrospinning of polymers: a review of issues and complications. J Appl Phys 111(4)

    Google Scholar 

  120. McKee MG, Layman JM, Cashion MP, Long TE (2006) Phospholipid nonwoven electrospun membranes. Science 311(5759):353–355

    Google Scholar 

  121. Pillay V, Dott C, Choonara YE, Tyagi C, Tomar L, Kumar P, du Toit LC, Ndesendo VMK, du Toit LC, Ndesendo VMK (2013) A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. J Nanomater. doi:10.1155/2013/789289

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangwu Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lin, Z., Yao, Y., Zhang, X. (2014). Electrospun Nanofibers for Design and Fabrication of Electrocatalysts and Electrolyte Membranes for Fuel cells. In: Ding, B., Yu, J. (eds) Electrospun Nanofibers for Energy and Environmental Applications. Nanostructure Science and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54160-5_2

Download citation

Publish with us

Policies and ethics