Skip to main content
Log in

Polyamide 6.9 nanofibres electrospun under steady state conditions from a solvent/non-solvent solution

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanofibres can be processed into several high-end applications due to their unique characteristics, especially when based on a diversity of polymers with specific properties. This, however, requires that the nanofibrous structures are produced in a highly reproducible way. The article gives focus to polyamide (PA) 6.9, a less exploited PA though with interesting properties such as a very low moisture absorption. To trace and understand the dominant parameters that allow for the aimed reproducible characteristics, the influence of the solution parameters on the steady state behaviour during electrospinning as well as the resultant fibre morphology is followed by scanning electron microscopy and differential scanning calorimetry. Results show a significant effect of the amount of non-solvent acetic acid, added to the solvent formic acid, on the steady state behaviour and the fibre morphology. The non-solvent acetic acid broadens the steady state window by making the electrospin solutions more suitable to obtain uniform and reproducible nanofibrous structures with a narrow nanofibre diameter distribution. The mixture of the solvent formic acid and the non-solvent acetic acid strongly contributes to the future potentials of PA 6.9 nanofibres, with its leading to a smaller fibre distribution and moreover highly reproducible in time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ramakrishna S et al (2005) An introduction to electrospinning and nanofibres. World Scientific publishing, Singapore

    Book  Google Scholar 

  2. Ahn YC et al (2006) Curr Appl Phys 6:1030

    Article  Google Scholar 

  3. Bergshoef MM, Vancso GJ (1999) Adv Mater 11:1362

    Article  CAS  Google Scholar 

  4. Neppalli R et al (2010) Eur Polym J 46(5):968

    Article  CAS  Google Scholar 

  5. Scampicchio M et al (2010) Electroanalysis 22(10):1056

    CAS  Google Scholar 

  6. Honarbakhsh S, Pourdeyhimi B (2011) J Mater Sci 46(9):2874. doi:10.1007/s10853-010-5161-5

    Article  CAS  Google Scholar 

  7. Ba Linh NT, Lee K-H, Lee B-T (2011) J Mater Sci 46(17):5615. doi:10.1007/s10853-011-5511-y

    Article  Google Scholar 

  8. Zhang HT et al (2010) J Mater Sci 45:2296. doi:10.1007/s10853-009-4191-3

    Article  CAS  Google Scholar 

  9. Huang Z-M et al (2003) Compos Sci Technol 63:2223

    Article  CAS  Google Scholar 

  10. Van der Schueren L et al (2011) Eur Polym J 47:1256

    Article  Google Scholar 

  11. Agarwal S et al (2008) Polymer 49(26):5603

    Article  CAS  Google Scholar 

  12. Heikkila P, Harlin A (2008) Eur Polym J 44(10):3067

    Article  CAS  Google Scholar 

  13. Kang H-K et al (2010) Macromol Res 19(4):364

    Article  Google Scholar 

  14. Van der Schueren L et al (2010) Eur Polym J 46(12):2229

    Article  Google Scholar 

  15. Havel M et al (2008) Adv Funct Mater 18(16):2322

    Article  CAS  Google Scholar 

  16. Dhanalakslimi M, Jog JP (2008) Exp Polym Lett 2(8):540

    Article  Google Scholar 

  17. Behler K, Havel M, Gogotsi Y (2007) Polymer 48(22):6617

    Article  CAS  Google Scholar 

  18. Stephens JS, Chase DB, Rabolt JF (2004) Macromolecules 37:877

    Article  CAS  Google Scholar 

  19. De Schoenmaker B et al (2011) J Appl Polym Sci 120:305

    Article  Google Scholar 

  20. Tan S-H et al (2005) Polymer 46:6128

    Article  CAS  Google Scholar 

  21. De Vrieze S (2009) J Appl Polym Sci 115:837

    Article  Google Scholar 

  22. De Vrieze S et al (2011) J Appl Polym Sci 119:2984

    Article  Google Scholar 

  23. Spivak AE, Dzcnis YA, Reneker DH (2000) Mech Res Commun 27:37

    Article  Google Scholar 

  24. Ren ZF et al (2010) J Text Inst 101:571

    Article  Google Scholar 

  25. Helgeson ME et al (2008) Polymer 49:2924

    Article  CAS  Google Scholar 

  26. Kim G et al (2006) Eur Polym J 42(9):2031

    Article  CAS  Google Scholar 

  27. Fong H et al (1999) Polymer 40(16):4585

    Article  CAS  Google Scholar 

  28. Odian G (2004) Principles of polymerization. Wiley, New York

    Book  Google Scholar 

  29. Wei W et al (2010) J Appl Polym Sci 118:3005

    Article  CAS  Google Scholar 

  30. John D (1998) Lange’s handbook of chemistry and physics, 15th edn. McGraw-Hill, New York

    Google Scholar 

  31. Supaphol P et al (2005) Macromol Mater Eng 290:933

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen De Clerck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Schoenmaker, B., Goethals, A., Van der Schueren, L. et al. Polyamide 6.9 nanofibres electrospun under steady state conditions from a solvent/non-solvent solution. J Mater Sci 47, 4118–4126 (2012). https://doi.org/10.1007/s10853-012-6266-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6266-9

Keywords

Navigation