Skip to main content
Log in

Simulation of microstructure evolution during hybrid deposition and micro-rolling process

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hybrid deposition and micro-rolling (HDMR) is a metal additive manufacturing process that integrates arc direct deposition manufacturing and micro-rolling. A two-dimensional cellular automata and finite volume method coupling model is developed for simulating the microstructure evolution of solidification and the dynamic recrystallization during HDMR forming. The influences of different rolling reductions on dynamic recrystallization fraction, average equivalent radius of recrystallized grains, and the area of dynamic recrystallization region are discussed. The results show that solidification microstructure consists of complete columnar dendrite. The rolling reduction plays a dominant role in determining the area of dynamic recrystallization region and the size of recrystallized grains. The average recrystallized grain size at the top position is not affected by rolling reduction, while the influence of rolling reduction on the dynamic recrystallization fraction and average radius of recrystallized grain is found to be stable, but not linear. The same qualitative and quantitative conclusions are drawn from the experimental results as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. Hebert RJ (2016) Viewpoint: metallurgical aspects of powder bed metal additive manufacturing. J Mater Sci 51:1165–1175

    Article  Google Scholar 

  2. Edwards P, Ramulu M (2015) Effect of build direction on the fracture toughness and fatigue crack growth in selective laser melted Ti-6Al-4 V. Fatigue Fract Eng Mater Struct 38:1228–1236

    Article  Google Scholar 

  3. Niu HJ, Chang ITH (2000) Selective laser sintering of gas atomized M2 high speed steel powder. J Mater Sci 35:31–38

    Article  Google Scholar 

  4. Zhao J, Zhang B, Li X (2015) Effects of metal-vapor jet force on the physical behavior of melting wire transfer in electron beam additive manufacturing. J Mater Process Technol 220:243–250

    Article  Google Scholar 

  5. Kazanas P, Deherkar P, Almeida P, Lockett H, Williams S (2012) Fabrication of geometrical features using wire and arc additive manufacture. Proc Inst Mech Eng Part B J Eng Manuf 226:1042–1051

    Article  Google Scholar 

  6. Colegrove PA, Coules HE, Fairman J, Martina F, Kashoob T, Mamash H, Cozzolino LD (2013) Microstructure and residual stress improvement in wire and arc additively manufactured parts through high-pressure rolling. J Mater Process Technol 213:1782–1791

    Article  Google Scholar 

  7. Suryakumar S, Karunakaran KP, Bernard A, Chandrasekhar U, Raghavender N, Sharma D (2011) Weld bead modeling and process optimization in hybrid layered manufacturing. Comput Aided Des 43:331–344

    Article  Google Scholar 

  8. Wang F, Williams S, Colegrove P, Antonysamy AA (2013) Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V. Metall Mater Trans A 44:968–977

    Article  Google Scholar 

  9. Zhang H, Wang X, Wang G, Zhang Y (2013) Hybrid direct manufacturing method of metallic parts using deposition and micro continuous rolling. Rapid Prototyp J 19:387–394

    Article  Google Scholar 

  10. Tian YX, Wang G, Yu S (2015) Microstructure characteristics and strain rate sensitivity of a biomedical Ti–25Nb–3Zr–3Mo–2Sn titanium alloy during thermomechanical processing. J Mater Sci 50:5165–5173

    Article  Google Scholar 

  11. Rappaz M, Gandin CA (1993) Probabilistic modelling of microstructure formation in solidification processes. Acta Metall Mater 41:45–360

    Article  Google Scholar 

  12. Nastac L, Stefanescu DM (1997) Stochastic modelling of microstructure formation in solidification processes. Modell Simul Mater Sci Eng 5:391–420

    Article  Google Scholar 

  13. Nastac L (1999) Numerical modeling of solidification morphologies and segregation patterns in cast dendritic alloys. Acta Mater 17:4253–4262

    Article  Google Scholar 

  14. Wang W, Lee PD, Mclean M (2003) A model of solidification microstructures in nickel-based superalloys: predicting primary dendrite spacing selection. Acta Mater 51:2971–2987

    Article  Google Scholar 

  15. Luo S, Zhu M, Louhenkilp S (2012) Numerical simulation of solidification structure of high carbon steel in continuous casting using cellular automaton method. ISIJ Int 52:823–830

    Article  Google Scholar 

  16. Pavlyk V, Dilthey U (2004) Simulation of weld solidification microstructure and its coupling to the macroscopic heat and fluid flow modeling. Modell Simul Mater Sci Eng 12:S33–S45

    Article  Google Scholar 

  17. Zhan X, Wei Y, Dong Z (2008) Cellular automaton simulation of grain growth with different orientation angles during solidification process. J Mater Process Technol 208:1–8

    Article  Google Scholar 

  18. Chen S, Guillemot G, Gandin CA (2014) 3D coupled cellular automaton (CA)–finite element (FE) modeling for solidification grain structures in gas tungsten arc welding (GTAW). ISIJ Int 54:401–407

    Article  Google Scholar 

  19. Hesselbarth HW, Göbel IR (1991) Simulation of recrystallization by cellular automata. Acta Metall Mater 9:2135–2143

    Article  Google Scholar 

  20. Goetz RL, Seetharaman V (1998) Static recrystallization kinetics with homogeneous and heterogeneous nucleation using a cellular automata model. Metall Mater Trans A 29:2307–2321

    Article  Google Scholar 

  21. Goetz RL, Seetharaman V (1998) Modeling dynamic recrystallization using cellular automata. Scr Mater 38:405–413

    Article  Google Scholar 

  22. Raabe D (1999) Introduction of a scalable three-dimensional cellular automaton with a probabilistic switching rule for the discrete mesoscale simulation of recrystallization phenomena. Philos Mag A 79:339–2358

    Article  Google Scholar 

  23. Ding R, Guo ZX (2001) Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization. Acta Mater 49:3163–3175

    Article  Google Scholar 

  24. Lan YJ, Xiao NM, Li DZ, Li YY (2005) Mesoscale simulation of deformed austenite decomposition into ferrite by coupling a cellular automaton method with a crystal plasticity finite element model. Acta Mater 53:991–1003

    Article  Google Scholar 

  25. Kugler G, Turk R (2006) Study of the influence of initial microstructure topology on the kinetics of static recrystallization using a cellular automata model. Comput Mater Sci 37:284–291

    Article  Google Scholar 

  26. Xiao N, Zheng C, Li D, Li Y (2008) A simulation of dynamic recrystallization by coupling a cellular automaton method with a topology deformation technique. Comput Mater Sci 41:366–374

    Article  Google Scholar 

  27. Han F, Tang B, Kou H, Li J, Feng Y (2013) Cellular automata modeling of static recrystallization based on the curvature driven subgrain growth mechanism. J Mater Sci 48:7142–7152

    Article  Google Scholar 

  28. Chen F, Qi K, Cui Z, Lai X (2014) Modeling the dynamic recrystallization in austenitic stainless steel using cellular automaton method. Comput Mater Sci 83:331–340

    Article  Google Scholar 

  29. Han F, Tang B, Kou H, Cheng L, Li J, Feng Y (2014) Static recrystallization simulations by coupling cellular automata and crystal plasticity finite element method using a physically based model for nucleation. J Mater Sci 49:3253–3267

    Article  Google Scholar 

  30. Luo S, Zhu MY (2013) A two-dimensional model for the quantitative simulation of the dendritic growth with cellular automaton method. Comput Mater Sci 71:10–18

    Article  Google Scholar 

  31. Kremeyer K (1998) Cellular automata investigations of binary solidification. J Comput Phys 142:243–262

    Article  Google Scholar 

  32. Mecking H, Kocks UF (1981) Kinetics of flow and strain-hardening. Acta Metall 29:1865–1875

    Article  Google Scholar 

  33. Kugler G, Turk R (2004) Modeling the dynamic recrystallization under multi-stage hot deformation. Acta Mater 52:4659–4668

    Article  Google Scholar 

  34. Humphreys FJ, Hatherly M (1995) Recrystallization and related annealing phenomena. Pergamon Press, Oxford 17

    Google Scholar 

  35. McQueen HJ (2004) Development of dynamic recrystallization theory. Mater Sci Eng A 387:203–208

    Article  Google Scholar 

  36. Roberts W, Ahlblom B (1978) A nucleation criterion for dynamic recrystallization during hot working. Acta Metall 26:801–813

    Article  Google Scholar 

  37. Song KJ, Dong ZB, Fang K, Zhan XH, Wei YH (2015) Acceleration of regeneration treatment for nanostructured bainitic steel welding by static recrystallisation. Mater Sci Technol 30:700–711

    Article  Google Scholar 

  38. Jin Z, Cui Z (2010) Investigation on strain dependence of dynamic recrystallization behavior using an inverse analysis method. Mater Sci Eng A 527:3111–3119

    Article  Google Scholar 

  39. Read WT, Shockley W (1950) Dislocation models of crystal grain boundaries. Phys Rev 78:275

    Article  Google Scholar 

  40. Guo BF, Ji HP, Liu XG, Gao L, Dong RM, Jin M, Zhang QH (2012) Research on flow stress during hot deformation process and processing map for 316LN austenitic stainless steel. J Mater Eng Perform 21:1455–1461

    Article  Google Scholar 

  41. Liu XG, Ji HP, Guo H, Jin M, Guo BF, Gao L (2013) Study on hot deformation behaviour of 316ln austenitic stainless steel based on hot processing map. Mater Sci Technol 29:24–29

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51175203, 51374113 and 51505210).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiou Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Zhang, H., Wang, G. et al. Simulation of microstructure evolution during hybrid deposition and micro-rolling process. J Mater Sci 51, 6735–6749 (2016). https://doi.org/10.1007/s10853-016-9961-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9961-0

Keywords

Navigation