Skip to main content
Log in

Low electric field-driven giant strain response in 〈001〉 textured BNT-based lead-free piezoelectric materials

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The applied electric field to drive intended large strain response in Bi0.5Na0.5TiO3-based piezoelectric ceramics is usually high (mostly with E ≥ 60 kV/cm) and remains a long-standing drawback for actual actuator applications. In this work, we report 〈001〉 oriented (1−x) (0.83Bi0.5Na0.5TiO3–0.17Bi0.5K0.5TiO3)–xBaTiO3 (BNT–BKT–BT) lead-free piezoelectric ceramics using BT as the template particles to tailor the strain behavior under a low driving field. The strain response exhibited an increasing trend with the increasing grain orientation, and remarkably giant S max/E max of 800 pm/V was acquired under a relatively low electric field of 45 kV/cm in the optimized microstructure for textured BNT-BKT–1BT ceramics compared with the reported lead-free Bi-based perovskite ceramics. Furthermore, the achieved textured ceramics showed prominent electric field- and temperature-dependent strain characteristic featured by both a high room-temperature S max/E max of 621 pm/V under a very low driving field of 35 kV/cm and an achievable large S max/E max of 531 pm/V with almost vanished hysteretic behavior at high temperature. Our work may be helpful for designing BNT-based lead-free materials with promising strain response and thus provides a new approach to resolve this drawback of BNT-based lead-free piezoelectric ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Rödel J, Jo W, Seifert KTP, Anton EM, Granzow T, Damjanovic D (2009) Perspective on the development of lead-free piezoceramics. J Am Ceram Soc 92:1153–1177

    Article  Google Scholar 

  2. Chang Y, Wu J, Sun Y, Zhang S, Wang X, Yang B, Messing GL, Cao W (2015) Enhanced electromechanical properties and phase transition temperatures in [001] textured Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ternary ceramics. Appl Phys Lett 107:082902

    Article  Google Scholar 

  3. Liu X, Tan X (2016) Giant strains in non-textured (Bi1/2Na1/2)TiO3-based lead-free ceramics. Adv Mater 28:574–578

    Article  Google Scholar 

  4. Wang K, Hussain A, Jo W, Rödel J, Viehland DD (2012) Temperature-dependent properties of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-SrTiO3 lead-free piezoceramics. J Am Ceram Soc 95:2241–2247

    Article  Google Scholar 

  5. Jo W, Dittmer R, Acosta M, Zang J, Groh C, Sapper E, Wang K, Rödel J (2012) Giant electric-field-induced strains in lead-free ceramics for actuator applications—status and perspective. J Electroceram 29:71–93

    Article  Google Scholar 

  6. Zhang ST, Kounga AB, Aulbach E, Ehrenberg H, Rödel J (2007) Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3 system. Appl Phys Lett 91:112906

    Article  Google Scholar 

  7. Seifert KTP, Jo W, Rödel J (2010) Temperature-insensitive large strain of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-(K0.5Na0.5)NbO3 lead-free piezoceramics. J Am Ceram Soc 93:1392–1396

    Google Scholar 

  8. Lee DS, Lim DH, Kim MS, Kim KH, Jeong SJ (2011) Electric field-induced deformation behavior in mixed Bi0.5Na0.5TiO3 and Bi0.5(Na0.75K0.25)0.5TiO3-BiAlO3. Appl Phys Lett 99:062906

    Article  Google Scholar 

  9. Ullah A, Won Ahn C, Ullah A, Won Kim I (2013) Large strain under a low electric field in lead-free bismuth-based piezoelectrics. Appl Phys Lett 103:022906

    Article  Google Scholar 

  10. Teranishi S, Suzuki M, Noguchi Y, Miyayama M, Moriyoshi C, Kuroiwa Y, Tawa K, Mori S (2008) Giant strain in lead-free Bi0.5Na0.5TiO3-based single crystals. Appl Phys Lett 92:182905

    Article  Google Scholar 

  11. Ye C, Hao J, Shen B, Zhai J (2012) Large strain response in 〈00l〉 Textured 0.79BNT-0.20BKT-0.01NKN lead-free piezoelectric ceramics. J Am Ceram Soc 95:3577–3581

    Article  Google Scholar 

  12. Maurya D, Zhou Y, Yan Y, Priya S (2013) Synthesis mechanism of grain-oriented lead-free piezoelectric Na0.5Bi0.5TiO3-BaTiO3 ceramics with giant piezoelectric response. J Mater Chem C 1:2102

    Article  Google Scholar 

  13. Chen C, Zhao X, Wang Y, Zhang H, Deng H, Li X, Jiang X, Jiang X, Luo H (2016) Giant strain and electric-field-induced phase transition in lead-free (Na0.5Bi0.5)TiO3-BaTiO3-(K0.5Na0.5)NbO3 single crystal. Appl Phys Lett 108:022903

    Article  Google Scholar 

  14. Maurya D, Zhou Y, Wang Y, Yan Y, Li J, Viehland D, Priya S (2015) Giant strain with ultra-low hysteresis and high temperature stability in grain oriented lead-free K0.5Bi0.5TiO3-BaTiO3-Na0.5Bi0.5TiO3 piezoelectric materials. Sci Rep 5:8595

    Article  Google Scholar 

  15. Maurya D, Pramanick A, An K, Priya S (2012) Enhanced piezoelectricity and nature of electric-field induced structural phase transformation in textured lead-free piezoelectric Na0.5Bi0.5TiO3-BaTiO3 ceramics. Appl Phys Lett 100:172906

    Article  Google Scholar 

  16. Bai W, Li L, Li W, Shen B, Zhai J, Chen H (2014) Effect of SrTiO3 template on electric properties of textured BNT–BKT ceramics prepared by templated grain growth process. J Alloys Comp 603:149–157

    Article  Google Scholar 

  17. Zhang H, Xu P, Patterson E, Zang J, Jiang S, Rödel J (2015) Preparation and enhanced electrical properties of grain-oriented (Bi1/2Na1/2)TiO3-based lead-free incipient piezoceramics. J Eur Ceram Soc 35:2501–2512

    Article  Google Scholar 

  18. Hussain A, Rahman JU, Ahmed F, Kim JS, Kim MH, Song TK, Kim WJ (2015) Plate-like Na0.5Bi0.5TiO3 particles synthesized by topochemical microcrystal conversion method. J Eur Ceram Soc 35:919–925

    Article  Google Scholar 

  19. Jiang C, Zhou X, Zhou K, Chen C, Luo H, Yuan X, Zhang D (2016) Grain oriented Na0.5Bi0.5TiO3-BaTiO3 ceramics with giant strain response derived from single-crystalline Na0.5Bi0.5TiO3-BaTiO3 templates. J Eur Ceram Soc 36:1377–1383

    Article  Google Scholar 

  20. Ye SK, Fuh JYH, Lu L (2012) Structure and electrical properties of 〈001〉 textured (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 lead-free piezoelectric ceramics. Appl Phys Lett 100:252906

    Article  Google Scholar 

  21. Viola G, McKinnon R, Koval V, Adomkevicius A, Dunn S, Yan H (2014) Lithium-induced phase transitions in lead-free Bi0.5Na0.5TiO3 based ceramics. J Phys Chem C 118:8564–8570

    Article  Google Scholar 

  22. Viola G, Tan Y, McKinnon RA, Wei X, Yan H, Reece MJ (2014) Short range polar state transitions and deviation from Rayleigh-type behaviour in Bi0.5Na0.5TiO3-based perovskites. Appl Phys Lett 105:102906

    Article  Google Scholar 

  23. Dittmer R, Jo W, Rödel J, Kalinin S, Balke N (2012) Nanoscale insight into lead-free BNT–BT–Xknn. Adv Funct Mater 22:4208–4215

    Article  Google Scholar 

  24. Jo W, Schaab S, Sapper E, Schmitt LA, Kleebe HJ, Bell AJ, Rödel J (2011) On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3-6 mol% BaTiO3. J Appl Phys 110:074106

    Article  Google Scholar 

  25. Jo W, Granzow T, Aulbach E, Rödel J, Damjanovic D (2009) Origin of the large strain response in (K0.5Na0.5)NbO3-modified (Bi0.5Na0.5)TiO3]-BaTiO3 lead-free piezoceramics. J Appl Phys 105:094102

    Article  Google Scholar 

  26. Donnelly NJ, Shrout TR, Randall CA (2007) Addition of a Sr, K, Nb (SKN) combination to PZT (53/47) for high strain applications. J Am Ceram Soc 90:490–495

    Article  Google Scholar 

  27. Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M (2004) Lead-free piezoceramics. Nature 432:84–87

    Article  Google Scholar 

  28. Hajime N, Masahiro S, Yuji H, Tadashi T (2010) Fabrication and piezoelectric properties of textured (Bi1/2K1/2)TiO3 ferroelectric ceramics. Jpn J Appl Phys 49:09MD08

    Google Scholar 

  29. Wang F, Xu M, Tang Y, Wang T, Shi W, Leung CM (2012) Large strain response in the ternary Bi0.5Na0.5TiO3-BaTiO3-SrTiO3 solid solutions. J Am Ceram Soc 95:1955–1959

    Article  Google Scholar 

  30. Ullah A, Ahn CW, Hussain A, Lee SY, Kim IW (2011) Phase transition, electrical properties, and temperature-insensitive large strain in BiAlO3-modified Bi0.5(Na0.75K0.25)0.5TiO3 lead-free piezoelectric ceramics. J Am Ceram Soc 94:3915–3921

    Article  Google Scholar 

  31. Ullah A, Malik RA, Ullah A, Lee DS, Jeong SJ, Lee JS, Kim IW, Ahn CW (2014) Electric-field-induced phase transition and large strain in lead-free Nb-doped BNKT–BST ceramics. J Eur Ceram Soc 34:29–35

    Article  Google Scholar 

  32. Malik RA, Kang JK, Hussain A, Ahn CW, Han HS, Lee JS (2014) High strain in lead-free Nb-doped Bi1/2(Na0.84K0.16)1/2TiO3–SrTiO3 incipient piezoelectric ceramics. Appl Phys Exp 7:061502

    Article  Google Scholar 

  33. Maqbool A, Hussain A, Malik RA, Rahman JU, Zaman A, Song TK, Kim WJ, Kim MH (2015) Evolution of phase structure and giant strain at low driving fields in Bi-based lead-free incipient piezoelectrics. Mater Sci Eng B 199:105–112

    Article  Google Scholar 

  34. Acosta M, Jo W, Rödel J, Lupascu DC (2014) Temperature- and frequency-dependent properties of the 0.75Bi1/2Na1/2TiO3–0.25SrTiO3 lead-free incipient piezoceramic. J Am Ceram Soc 97:1937–1943

    Article  Google Scholar 

  35. Tran VDN, Dinh TH, Han HS, Jo W, Lee JS (2013) Lead-free Bi1/2(Na0.82K0.18)1/2TiO3 relaxor ferroelectrics with temperature insensitive electrostrictive coefficient. Ceram Int 39:119–124

    Article  Google Scholar 

  36. Guo Y, Fan H, Shi J (2014) Origin of the large strain response in ternary SrTi0.8Zr0.2O3 modified Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3 lead-free piezoceramics. J Mater Sci 50:403–411. doi:10.1007/s10853-014-8599-z

    Article  Google Scholar 

  37. Hao J, Xu Z, Chu R, Li W, Du J (2015) Lead-free electrostrictive (Bi0.5Na0.5)TiO3–(Bi0.5K0.5)TiO3–(K0.5Na0.5)NbO3 ceramics with good thermostability and fatigue-free behavior. J Mater Sci 50:5328–5336. doi:10.1007/s10853-015-9080-3

    Article  Google Scholar 

  38. Bai W, Bian Y, Hao J, Shen B, Zhai J (2013) The composition and temperature-dependent structure evolution and large strain response in (1−x)(Bi0.5Na0.5)TiO3xBa(Al0.5Ta0.5)O3 Ceramics. J Am Ceram Soc 96:246–252

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Natural Science Foundation of China (Grant Nos. 51502067, 51302056, 21271170, 51572065), the Natural Science Foundation of Zhejiang Province (LQ16E020004, LY16E020005), the National Natural Science Foundation of (Grant Nos. 51372171, 51332003), the Shanghai Municipal Natural Science Foundation (Grant No. 12ZR1434600), and the National Natural Science Foundation of China (Grant No. 61372025).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wangfeng Bai or Zhenguo Ji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, W., Chen, D., Zheng, P. et al. Low electric field-driven giant strain response in 〈001〉 textured BNT-based lead-free piezoelectric materials. J Mater Sci 52, 3169–3178 (2017). https://doi.org/10.1007/s10853-016-0606-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0606-0

Keywords

Navigation