Skip to main content
Log in

Electric Field-Induced Large Strain in Ni/Sb-co Doped (Bi0.5Na0.5) TiO3-Based Lead-Free Ceramics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Lead-free piezoelectric ceramics (Bi0.5Na0.5)0.935Ba0.065Ti1−x (Ni0.5Sb0.5) x O3 (BNBT6.5-xNS) have been fabricated using conventional solid sintering technique. The effect of (Ni, Sb) doping on the phase structure and electrical properties of BNBT6.5 ceramics were systematically investigated. Results show that the addition of (Ni, Sb) destroyed the ferroelectric long-range order of BNBT6.5 and shifted the ferroelectric–relaxor transition temperature (T F–R) down to room temperature. Thus, this process induced an ergodic relaxor phase at zero field in samples with x = 0.005. Under the electric field, the ergodic relaxor phase could reversibly transform to ferroelectric phase, which promotes the strain response with peak value of 0.38% (at 80 kV/cm, corresponding to d 33 * = 479 pm/V) at x = 0.005. Temperature-dependent measurements of both polarization and strain confirmed that the large strain originated from a reversible field-induced ergodic relaxor to ferroelectric phase transformation. The proposed material exhibits potential for nonlinear actuators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.J. Zhang, R. Xia, and T.R. Shrout, J. Electroceram. 19, 251 (2007).

    Article  Google Scholar 

  2. J.G. Wu, D.Q. Xiao, and J.G. Zhu, Chem. Rev. 115, 2559 (2015).

    Article  Google Scholar 

  3. J.G. Wu, Z. Fan, and D.Q. Xiao, et al., Prog. Mater Sci. 84, 335 (2016).

    Article  Google Scholar 

  4. T.R. Shrout and S.J. Zhang, J. Electroceram. 19, 113 (2007).

    Article  Google Scholar 

  5. J. Rodel, W. Jo, and K.T.P. Seifert, et al., J. Am. Ceram. Soc. 92, 1153 (2009).

    Article  Google Scholar 

  6. P. Jarupoom and P. Jaita, Electron. Mater. Lett. 11, 1 (2015).

    Article  Google Scholar 

  7. Y.R. Zhang, J.F. Li, B.P. Zhang, and C.E. Peng, J. Appl. Phys. 103, 074109 (2008).

    Article  Google Scholar 

  8. R. Sumang, N. Vittayakorn, and T. Bongkarn, Ceram. Int. 39, S409 (2013).

    Article  Google Scholar 

  9. W.-S. Kang and J.-H. Koh, J. Eur. Ceram. Soc. 35, 2057 (2015).

    Article  Google Scholar 

  10. S.T. Zhang, A.B. Kounga, A. Emil, and Y. Deng, J. Am. Ceram. Soc. 91, 3950 (2008).

    Article  Google Scholar 

  11. A. Sasaki, T. Chiba, Y. Mamiya, and E. Otsuki, Jpn. J. Appl. Phys. 38, 5564 (1999).

    Article  Google Scholar 

  12. K. Yoshii, Y. Hiruma, H. Nagata, and T. Takenaka, Jpn. J. Appl. Phys. 45, 4493 (2006).

    Article  Google Scholar 

  13. A.B. Kounga, S.T. Zhang, W. Jo, and T. Granzow, Appl. Phys. Lett. 92, 222902 (2008).

    Article  Google Scholar 

  14. W. Bai, Y. Bian, J. Hao, B. Shen, J. Zhai, and S. Zhang, J. Am. Ceram. Soc. 96, 246 (2013).

    Article  Google Scholar 

  15. P. Fu, Z. Xu, R. Chu, X. Wu, W. Li, and X. Li, Mater. Des. 46, 322 (2013).

    Article  Google Scholar 

  16. X. Wang, X. Tang, and H. Chan, Appl. Phys. Lett. 85, 91 (2004).

    Article  Google Scholar 

  17. S.T. Zhang, A.B. Kounga, E. Aulbach, and H. Ehrenberg, Appl. Phys. Lett. 91, 112906 (2007).

    Article  Google Scholar 

  18. T. Takenaka, K.I. Maruyama, and K. Sakata, Jpn. J. Appl. Phys. 30, 2236 (1991).

    Article  Google Scholar 

  19. H.L. Li, C.D. Feng, and P.H. Xiang, Jpn. J. Appl. Phys. 42, 7387 (2003).

    Article  Google Scholar 

  20. D.W. Kang, T.G. Park, J.W. Kim, S.K. Jin, and H.S. Lee, Electron. Mater. Lett. 6, 145 (2010).

    Article  Google Scholar 

  21. F. Wang, M. Xu, Y. Tang, T. Wang, and W. Shi, Phys. J. Am. Ceram. Soc. 95, 1955 (2012).

    Article  Google Scholar 

  22. R. Cheng, Z. Xu, R. Chu, J. Hao, J. Du, and G. Li, J. Eur. Ceram. Soc. 36, 489 (2016).

    Article  Google Scholar 

  23. L. Li, J. Hao, Z. Xu, R. Chu, W. Li, and G. Li, Ceram. Int. 42, 14886 (2016).

    Article  Google Scholar 

  24. L. Li, J. Hao, Z. Xu, W. Li, and R. Chu, Ceram. Int. 42, 9419 (2016).

    Article  Google Scholar 

  25. K. Wang, A. Hussain, and W. Jo, et al., J. Am. Ceram. Soc. 95, 2241 (2012).

    Article  Google Scholar 

  26. P. Kantha, K. Pengpat, and P. Jarupoom, et al., Curr. Appl. Phys. 9, 460 (2009).

    Article  Google Scholar 

  27. C. Xu, D. Lin, and K. Kwok, Solid State Sci. 10, 934 (2008).

    Article  Google Scholar 

  28. Q. Xu, and X.-L. Chen, et al., Mater. Sci. Eng. B. 130, 94 (2006).

    Article  Google Scholar 

  29. K. Ramam and M. Lopez, J. Phys. D Appl. Phys. 39, 4466 (2006).

    Article  Google Scholar 

  30. J. Hao, B. Shen, J. Zhai, C. Liu, X. Li, and X. Gao, J. Am. Ceram. Soc. 96, 3133 (2013).

    Article  Google Scholar 

  31. F.Z. Yao, and K. Wang, et al., Adv. Funct. Mater. 26, 1217 (2016).

    Article  Google Scholar 

  32. M.H. Zhang, and K. Wang, et al., J. Am. Chem. Soc. 139, 3889 (2017).

    Article  Google Scholar 

  33. J. Hao, Z. Xu, R. Chu, W. Li, and J. Du, J. Alloys Compd. 647, 857 (2015).

    Article  Google Scholar 

  34. G. Fan, W. Lu, X. Wang, F. Liang, and J. Xiao, J. Phys. D Appl. Phys. 41, 035403 (2008).

    Article  Google Scholar 

  35. D. Lin, K.W. Kwok, and H.L.W. Chan, Solid State Ion. 178, 1930 (2008).

    Google Scholar 

  36. D. Lin, K.W. Kwok, and H.L.W. Chan, J. Alloys Compd. 481, 310 (2009).

    Article  Google Scholar 

  37. C. Xu, D. Lin, and K.W. Kwok, Solid State Sci. 10, 934 (2008).

    Article  Google Scholar 

  38. A. Maqbool, A. Hussain, and J. Ur Rahman, et al., Ceram. Int. 40, 11905 (2014).

    Article  Google Scholar 

  39. J. Hao, B. Shen, J. Zhai, and H. Chen, J. Appl. Phys. 115, 034101 (2014).

    Article  Google Scholar 

  40. J. Hao, Z. Xu, R. Chu, W. Li, P. Fu, and J. Du, J. Alloys Compd. 677, 96 (2016).

    Article  Google Scholar 

  41. B.S. Kang, S.K. Chol, and C.H. Park, J. Appl. Phys. 94, 1904 (2003).

    Article  Google Scholar 

  42. S. Steinsvik, R. Bugge, J. Gjonnes, J. Tafto, and T. Norby, J. Phys. Chem. Solids 58, 969 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2016YFB0402701), National Natural Science Foundation of China (Nos. 51372110, 51402144 and 51502127), the Natural Science Foundation of Shandong Province of China (ZR2016EMM02), Independent innovation and achievement transformation in Shandong Province special, China (No. 2014CGZH0904), the Natural Science Foundation of Shandong Province of China (ZR2014JL030), The Project of Shandong Province Higher Educational Science and Technology Program (Nos. J14LA11, J14LA10).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jigong Hao or Ruiqing Chu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Hao, J., Xu, Z. et al. Electric Field-Induced Large Strain in Ni/Sb-co Doped (Bi0.5Na0.5) TiO3-Based Lead-Free Ceramics. J. Electron. Mater. 47, 1512–1518 (2018). https://doi.org/10.1007/s11664-017-5935-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5935-5

Keywords

Navigation