Skip to main content
Log in

Enhanced photocatalytic activity of TiO2 with poly(AA-DVB)

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A composite material poly(AA-DVB)@TiO2, which exhibits high photocatalytic activity, was prepared using poly(AA-DVB) containing the electron-withdrawing group by a sol–gel method without calcination. The physicochemical properties of poly(AA-DVB)@TiO2 were characterized by XRD, SEM, TEM, BET, EDS, and XPS. Photocatalytic measurements were conducted using a xenon lamp with the aim of analyzing the degradation of methyl blue (MB) and methyl orange (MO) solutions. For the photodegradation of MB and MO, poly(AA-DVB)@TiO2 exhibits photocatalytic activity significantly higher than that of TiO2 solid nanocrystals. After five cycle experiments, poly(AA-DVB)@TiO2 exhibits better efficiency. The experiments confirmed that the aromatic rings and carboxyl groups, which lead to the negative conjugation effect, synergistic effect, and higher separation efficiency of photogenerated electrons and holes, can greatly improve the photocatalytic activity of TiO2. Light capture results indicate that the main catalytic factor in poly(AA-DVB)@TiO2 as the photocatalyst is the holes. Further, the high surface area and pore also improve the photocatalytic efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Yang Y, Wang G, Deng Q, Ng DHL, Zhao H (2014) Microwave-assisted fabrication of nanoparticulate TiO2 microspheres for synergistic photocatalytic removal of Cr(VI) and methyl orange. ACS Appl Mater Interfaces 6:3008–3015

    Article  Google Scholar 

  2. Wang S, Pan L, Song J-J, Mi W, Zou J-J, Wang L, Zhang X (2015) Titanium-defected undoped anatase TiO2 with p-type conductivity, room-temperature ferromagnetism, and remarkable photocatalytic performance. J Am Chem Soc 137:2975–2983

    Article  Google Scholar 

  3. Lira E, Wendt S, Huo P, Hansen JØ, Streber R, Porsgaard S, Wei Y, Bechstein R, Lægsgaard E, Besenbacher F (2011) The importance of bulk Ti3+ defects in the oxygen chemistry on titania surfaces. J Am Chem Soc 133:6529–6532

    Article  Google Scholar 

  4. Zuo F, Bozhilov K, Dillon RJ, Wang L, Smith P, Zhao X, Bardeen C, Feng P (2012) Active facets on titanium(iii)-doped TiO2: an effective strategy to improve the visible-light photocatalytic activity. Angew Chem Int Ed 51:6223–6226

    Article  Google Scholar 

  5. Li F-T, Zhao Y, Hao Y-J, Wang X-J, Liu R-H, Zhao D-S, Chen D-M (2012) N-doped P25 TiO2-amorphous Al2O3 composites: one-step solution combustion preparation and enhanced visible-light photocatalytic activity. J Hazard Mater 239–240:118–127

    Article  Google Scholar 

  6. Cantau C, Pigot T, Dupin J-C, Lacombe S (2010) N-doped TiO2 by low temperature synthesis: stability, photo-reactivity and singlet oxygen formation in the visible range. J Photochem Photobiol, A 216:201–208

    Article  Google Scholar 

  7. Chen F, Zou W, Qu W, Zhang J (2009) Photocatalytic performance of a visible light TiO2 photocatalyst prepared by a surface chemical modification process. Catal Commun 10:1510–1513

    Article  Google Scholar 

  8. Kuo Y-L, Su T-L, Kung F-C, Wu T-J (2011) A study of parameter setting and characterization of visible-light driven nitrogen-modified commercial TiO2 photocatalyst. J Hazard Mater 190:938–944

    Article  Google Scholar 

  9. Ananpattarachai J, Kajitvichyanukul P, Seraphin S (2009) Visible light absorption ability and photocatalytic oxidation activity of various interstitial N-doped TiO2 prepared from different nitrogen dopants. J Hazard Mater 168:253–261

    Article  Google Scholar 

  10. Wu M, Jin J, Liu J, Deng Z, Li Y, Deparis O, Su B-L (2013) High photocatalytic activity enhancement of titania inverse opal films by slow photon effect induced strong light absorption. J Mater Chem A 1:15491–15500

    Article  Google Scholar 

  11. Ren L, Li Y, Hou J, Zhao X, Pan C (2014) Preparation and enhanced photocatalytic activity of TiO2 nanocrystals with internal pores. ACS Appl Mater Interfaces 6:1608–1615

    Article  Google Scholar 

  12. Kong M, Li Y, Chen X, Tian T, Fang P, Zheng F, Zhao X (2011) Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency. J Am Chem Soc 133:16414–16417

    Article  Google Scholar 

  13. Shang S, Jiao X, Chen D (2012) Template-free fabrication of TiO2 hollow spheres and their photocatalytic properties. ACS Appl Mater Interfaces 4:860–865

    Article  Google Scholar 

  14. Li D, Qin Q, Duan X, Yang J, Guo W, Zheng W (2013) General one-pot template-free hydrothermal method to metal oxide hollow spheres and their photocatalytic activities and lithium storage properties. ACS Appl Mater Interfaces 5:9095–9100

    Article  Google Scholar 

  15. Huang ZA, Wang Z, Lv K, Zheng Y, Deng K (2013) Transformation of TiOF2 cube to a hollow nanobox assembly from anatase TiO2 nanosheets with exposed 001 facets via solvothermal strategy. ACS Appl Mater Interfaces 5:8663–8669

    Article  Google Scholar 

  16. Oveisi H, Rahighi S, Jiang X, Nemoto Y, Beitollahi A, Wakatsuki S, Yamauchi Y (2010) Unusual antibacterial property of mesoporous titania films: drastic improvement by controlling surface area and crystallinity. Chem Asian J 5:1978–1983

    Article  Google Scholar 

  17. Kimura T, Yamauchi Y, Miyamoto N (2011) Highly photoactive porous anatase films obtained by deformation of 3D mesostructures. Chem Eur J 17:4005–4011

    Article  Google Scholar 

  18. Kimura T, Yamauchi Y, Miyamoto N (2010) Condensation-and crystallinity-controlled synthesis of titanium oxide films with assessed mesopores. Chem Eur J 16:12069–12073

    Article  Google Scholar 

  19. Cornel P, Sontheimer H (1986) Sorption of dissolved organics from aqueous solution by polystyrene resins. II. External and internal mass transfer. J Chem Eng Sci 41:1801–1810

    Article  Google Scholar 

  20. Kunin R (1977) Polymeric adsorbents for treatment of waste effluents. Polym Eng Sci 17:58–62

    Article  Google Scholar 

  21. Liuxue Z, Peng L, Zhixing S (2006) A low temperature preparation and photocatalytical activities of PDVB@TiO2 hybrid microspheres. J Mater Sci 41:7218–7224

    Article  Google Scholar 

  22. Huth F, Govyadinov A, Amarie S, Nuansing W, Keilmann F, Hillenbrand R (2012) Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution. Nano Lett 12:3973–3978

    Article  Google Scholar 

  23. Ntim SA, Mitra S (2011) Surface tension and density of ionic liquid n-butylpyridinium heptachlorodialuminate. J Chem Eng Data 56:2077–2083

    Article  Google Scholar 

  24. Zhou Y, Schattka JH, Antonietti M (2004) Room-temperature ionic liquids as template to monolithic mesoporous silica with wormlike pores via a sol–gel nanocasting technique. Nano Lett 4:477–481

    Article  Google Scholar 

  25. Chen B, Zhu Z, Ma J, Qiu Y, Chen J (2013) Surfactant assisted Ce–Fe mixed oxide decorated multiwalled carbon nanotubes and their arsenic adsorption performance. J Mater Chem A 1:11355–11367

    Article  Google Scholar 

  26. Liu Z, Ma R, Osada M, Takada K, Sasaki T (2005) Selective and controlled synthesis of α- and β-cobalt hydroxides in highly developed hexagonal platelets. J Am Chem Soc 127:13869–13874

    Article  Google Scholar 

  27. Wang Y, He Q, Guo J, Wei H, Ding K, Lin H, Bhana S, Huang X, Luo Z, Shen TD, Wei S, Guo Z (2015) Carboxyl multiwalled carbon-nanotube-stabilized palladium nanocatalysts toward improved methanol oxidation reaction. ChemElectroChem 2:559–570

    Article  Google Scholar 

  28. Zhu H, Chen Z, Sheng Y, LuongThi TT (2010) Flaky polyacrylic acid/aluminium composite particles prepared using in situ polymerization. Dyes Pigments 86:155–160

    Article  Google Scholar 

  29. Liu G, Hou M, Song J, Jiang T, Fan H, Zhang Z, Han B (2010) Immobilization of Pd nanoparticles with functional ionic liquid grafted onto cross-linked polymer for solvent-free Heck reaction. Green Chem 12:65–69

    Article  Google Scholar 

  30. Jung H-G, Oh SW, Ce J, Jayaprakash N, Sun Y-K (2009) Mesoporous TiO2 nano networks: anode for high power lithium battery applications. Electrochem Commun 11:756–759

    Article  Google Scholar 

  31. Lee JS, You KH, Park CB (2012) Highly photoactive, low bandgap TiO2 nanoparticles wrapped by graphene. Adv Mater 24:1084–1088

    Article  Google Scholar 

  32. Jeong H-K, Lee YP, Lahaye RJWE, Park M-H, An KH, Kim IJ, Yang C-W, Park CY, Ruoff RS, Lee YH (2008) Evidence of graphitic AB stacking order of graphite oxides. J Am Chem Soc 130:1362–1366

    Article  Google Scholar 

  33. Zhang Q, He Y, Chen X, Hu D, Li L, Yin T, Ji L (2011) Structure and photocatalytic properties of TiO2-graphene oxide intercalated composite. Chin Sci Bull 56:331–339

    Article  Google Scholar 

  34. Chen W, Yan L, Bangal P (2010) Chemical reduction of grapheme oxide to graphene by sulfur-containing compounds. J Phys Chem C 114:19885–19890

    Article  Google Scholar 

  35. Bell NJ, Ng YH, Du A, Coster H, Smith SC, Amal R (2011) Understanding the enhancement in photoelectrochemical properties of photocatalytically prepared TiO2-reduced graphene oxide composite. J Phys Chem C 115:6004–6009

    Article  Google Scholar 

  36. Su C, Lin K-F, Lin Y-H, You B-H (2006) Preparation and characterization of high-surface-area titanium dioxide by sol–gel process. J Porous Mater 13:251–258

    Article  Google Scholar 

  37. Zhang J, Cao S, Xu S, Yang H, Yang L, Song Y, Jiang L, Dan Y (2015) Study on stability of poly(3-hexylthiophene)/titanium dioxide composites as a visible light photocatalyst. Appl Surf Sci 349:650–656

    Article  Google Scholar 

  38. Deepak TG, Subash D, Anjusree GS, Pai KRN, Nair SV, Nair AS (2014) Photovoltaic property of anatase TiO2 3-D mesoflowers. ACS Sustain Chem Eng 2:2772–2780

    Article  Google Scholar 

  39. Luo Q, Bao L, Wang D, Li X, An J (2012) Preparation and strongly enhanced visible light photocatalytic activity of TiO2 nanoparticles modified by conjugated derivatives of polyisoprene. J Phys Chem C 116:25806–25815

    Article  Google Scholar 

  40. Zhang N, Liu S, Fu X, Xu Y-J (2011) Synthesis of M@TiO2 (M = Au, Pd, Pt) core–shell nanocomposites with tunable photoreactivity. J Phys Chem C 115:9136–9145

    Article  Google Scholar 

  41. Duan X, Wang G, Wang H, Wang Y, Shen C, Cai W (2010) Orientable pore-size-distribution of ZnO nanostructures and their superior photocatalytic activity. CrystEngComm 12:2821–2825

    Article  Google Scholar 

  42. Qiu BC, Zhou Y, Ma YF, Yang XL, Sheng WQ, Xing MY, Zhang JL (2015) Facile synthesis of the Ti3+ elf-doped TiO2-graphene nanosheet composites with enhanced photocatalysis. Sci Rep 5:8591

    Article  Google Scholar 

  43. Liu G, Liu L, Song J, Liang J, Luo Q, Wang D (2014) Visible light photocatalytic activity of TiO2 nanoparticles hybridized by conjugated derivative of polybutadiene. Superlattice Microstruct 69:164–174

    Article  Google Scholar 

  44. Papadam T, Xekoukoulotakis NP, Poulios I, Mantzavinos D (2007) Photocatalytic transformation of acid orange 20 and Cr(VI) in aqueous TiO2 suspensions. J Photochem Photobiol A Chem 186:308–315

    Article  Google Scholar 

  45. Ohsaki H, Kanai N, Fukunaga Y, Suzuki M, Watanabe T, Hashimoto K (2006) Photocatalytic properties of SnO2/TiO2 multilayers. Thin Solid Films 502:138–142

    Article  Google Scholar 

  46. Ji Y, Lin K-C, Zheng H, Liu C-C, Dudik L, Zhu J, Burda C (2010) Solar-light photoamperometric and photocatalytic properties of quasi-transparent TiO2 nanoporous thin films. ACS Appl Mater Interfaces 2:3075–3082

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Applied Basic Research Programs of Science and Technology Department of Sichuan Province, China (2015JY0042), the Key Fund Project of Education Department of Sichuan Province, China (15ZA0147), and the Fundamental Research Funds of China West Normal University, China (14E015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hejun Gao or Yunwen Liao.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Gao, H. & Liao, Y. Enhanced photocatalytic activity of TiO2 with poly(AA-DVB). J Mater Sci 51, 10585–10595 (2016). https://doi.org/10.1007/s10853-016-0279-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0279-8

Keywords

Navigation