Skip to main content
Log in

Facile preparation of HNT/PVOH aerogels and the construction of PVOH-assisted HNT three-dimensional network

  • Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Halloysite nanotube/polyvinyl alcohol (HNT/PVOH) aerogel composites have been successfully prepared via an environmentally friendly freeze-drying process, by using water as solvent and borax solution as a cross-linking agent. These aerogel composites have a three-dimensional network structure formed by PVOH adhered to HNTs. The microstructure of aerogels and the interface adhesion between HNTs and PVOH were investigated by scanning electron microscopy and transmission electron microscopy. Meanwhile, thermal conductivity, compressive strength, and thermal stability were measured by related instruments. The results showed that HNT/PVOH aerogels were successfully synthesized and that HNTs firmly connected to PVOH played the role as a skeleton for aerogels and effectively enhanced the mechanical properties. As the content of HNTs increased, the obtained aerogel materials exhibited a decrease in thermal conductivity, an increase in compressive strength, an improvement in thermal stability, and formation of a locally dense PVOH network. Moreover, microstructure models were established by electron microscopic images to analyze the results in detail. Importantly, there is no need for the formation of block hydrogel during the synthetic process and these HNT/PVOH aerogel composites could be fabricated easily and quickly from cheap raw materials, contributing to large-scale production.

Highlights

  • These composites are easy to fabricate and environmentally friendly in the preparation process.

  • PVOH was adhered to HNTs to form a polymer-assisted three-dimensional network structure.

  • The structure and properties were analyzed in detail by microscopic models that were depicted by SEM and TEM images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen HB, Chiou BS, Wang YZ, Schiraldi DA (2013) Biodegradable pectin/clay aerogels. ACS Appl Mater Interfaces 5(5):1715–1721

    Article  Google Scholar 

  2. Bandi S, Bell M, Schiraldi DA (2005) Temperature-responsive clay aerogel-polymer composites. Macromolecules 38(22):9216–9220

    Article  Google Scholar 

  3. Finlay K, Gawryla MD, Schiraldi DA (2008) Biologically based fiber-reinforced/clay aerogel composites. Ind Eng Chem Res 47(3):615–619

    Article  Google Scholar 

  4. Wang L, Sánchez-Soto M, Maspoch ML (2013) Polymer/clay aerogel composites with flame retardant agents: mechanical, thermal and fire behavior. Mater Design 52(2013):609–614

    Article  Google Scholar 

  5. Liu A, Medina L, Berglund LA (2017) High-strength nanocomposite aerogels of ternary composition: poly(vinyl alcohol), clay, and cellulose nanofibrils. ACS Appl Mater Interfaces 9(7):6453–6461

    Article  Google Scholar 

  6. Wang L, Sánchez-Soto M, Abt T, Maspoch ML, Santana OO (2016) Microwave-crosslinked bio-based starch/clay aerogels. Polym Int 65(8):899–904

    Article  Google Scholar 

  7. Lu Y, Wu H, Chen Q (2015) Facile preparation of fracture-free pectin/clay aerogel monoliths. Mater Res Innov 19(sup2):s2-s46–s2-51

    Article  Google Scholar 

  8. Lvov Y, Wang WC, Zhang LQ, Fakhrullin R (2016) Halloysite clay nanotubes for loading and sustained release of functional compounds. Adv Mater 28(6):1227–1250

    Article  Google Scholar 

  9. Gaaz T, Kadhum A, Michael P, Al-Amiery A, Sulong A, Nassir M, Jaaz A (2017) Unique halloysite nanotubes-polyvinyl alcohol-polyvinylpyrrolidone composite complemented with physico-chemical characterization. Polymer 9(12):207

    Article  Google Scholar 

  10. Cheng ZL, Qin XX, Liu Z, Qin DZ (2016) Electrospinning preparation and mechanical properties of PVA/HNTs composite nanofibers. Polym Adv Technol 28(6):768–774

    Article  Google Scholar 

  11. Liu MX, Jia ZX, Jia DM, Zhou CR (2014) Recent advance in research on halloysite nanotubes-polymer nanocomposite. Prog Polym Sci 39(8):1498–1525

    Article  Google Scholar 

  12. Lvov YM, Shchukin DG, Möhwald H, Price RR (2008) Halloysite clay nanotubes for controlled release of protective agents. ACS Nano 2(5):814–820

    Article  Google Scholar 

  13. Kang HJ, Liu XR, Zhang SF, Li JZ (2017) Functionalization of halloysite nanotubes (HNTs) via mussel-inspired surface modification and silane grafting for HNTs/soy protein isolate nanocomposite film preparation. RSC Adv 7(39):24140–24148

    Article  Google Scholar 

  14. Cunha DA, Rodrigues NS, Souza LC, Lomonaco D, Rodrigues FP, Degrazia FW, Collares FM, Sauro S, Saboia VPA (2018) Physicochemical and microbiological assessment of an experimental composite doped with triclosan-loaded halloysite nanotubes. Materials 11(7):1080

    Article  Google Scholar 

  15. De Silva RT, Pasbakhsh P, Goh KL, Chai SP, Ismail H (2013) Physico-chemical characterisation of chitosan/halloysite composite membranes. Polym Test 32(2):265–271

    Article  Google Scholar 

  16. Khunová V, Kelnar I, Kristóf J, Dybal J, Kratochvíl J, Kaprálková L (2015) The effect of urea and urea-modified halloysite on performance of PCL. J Therm Anal Calorim 120(2):1283–1291

    Article  Google Scholar 

  17. Yang YX, Hai SK, Zhang WN (2017) Research on performance of PHA composites reinforced by HNTs. Plastics Sci Technol 46(1):76–79

    Google Scholar 

  18. Liu HL, Wei N, He X, An GQ, Xuan YJ (2018) Facile fabrication and characterization of novel three-dimensional halloysite nanotubes/graphene oxide composite aerogels for waste water treatment. Ferroelectrics 528(1):22–30

    Article  Google Scholar 

  19. Zhang Y, Jing OY, Yang HM (2014) Metal oxide nanoparticles deposited onto carbon-coated halloysite nanotubes. Appl Clay Sci 95:252–259

    Article  Google Scholar 

  20. Errais E, Duplay J, Darragi F, M’Rabet I, Aubert A, Huber F, Morvan G (2011) Efficient anionic dye adsorption on natural untreated clay: kinetic study and thermodynamic parameters. Desalination 275(1–3):74–81

    Article  Google Scholar 

  21. Hao A, Wong I, Wu H, Lisco B, Ong B, Sallean A, Butler S, Londa M, Koo JH (2014) Mechanical, thermal, and flame-retardant performance of polyamide 11-halloysite nanotube nanocomposites. J Mater Sci 50(1):157–167

    Article  Google Scholar 

  22. Jamaludin NA, Inuwa IM, Hassan A, Othman N, Jawaid M (2015) Mechanical and thermal properties of SEBS-g-MA compatibilized halloysite nanotubes reinforced polyethylene terephthalate/polycarbonate/nanocomposites. J Appl Polym Sci 132(39):42608

    Article  Google Scholar 

  23. Erdogan AR, Kaygusuz L, Kaynak C (2013) Influences of aminosilanization of halloysite nanotubes on the mechanical properties of polyamide-6 nanocomposites. Polym Composite 35(7):1350–1361

    Article  Google Scholar 

  24. Liu HL, He X, Li HY, Yang AW, Xiao R, Wei N (2017) Preparation and properties of HNTs/SiO2 composite aerogels. J Synth Cryst 46(11):2277–2282

    Google Scholar 

  25. Mraz J, Jheeta P, Gescher A, Hyland R, Thummel K, Threadgill MD (1993) Investigation of the mechanistic basis of N,N-dimethylformamide toxicity. Metabolism of N,N-dimethylformamide and its deuterated isotopomers by cytochrome P450 2E1. Chem Res Toxicol 6(2):197–207

    Article  Google Scholar 

  26. Lee M, Choi Y, Matsugi K, Sasaki G, Kelimu T (2013) Effect of SiO2 amount on microstructures and tensile properties of alumina short fiber-reinforced composites by low-pressure infiltration method. J Compos Mater 48(27):3435–3441

    Article  Google Scholar 

  27. Chen HB, Liu B, Huang W, Wang JS, Zeng G, Wu WH (2014) Fabrication and properties of irradiation-cross-linked polyvinyl alcohol/clay aerogel composites. ACS Appl Mater Interfaces 6(18):16227–16236

    Article  Google Scholar 

  28. Chen HB, Hollinger E, Wang YZ, Schiraldi DA (2014) Facile fabrication of polyvinyl alcohol gels and derivative aerogels. Polymer 55(1):380–384

    Article  Google Scholar 

  29. Anderson AM, Worster MG (2012) Periodic ice banding in freezing colloidal dispersions. Langmuir 28(48):16512–16523

    Article  Google Scholar 

  30. Zhou T, Cheng XD, Pan YL, Li CC, Gong LL (2018) Mechanical performance and thermal stability of polyvinyl alcohol–cellulose aerogels by freeze drying. Cellulose 26(3):1747–1755

    Article  Google Scholar 

  31. Cheng ZH, DeGracia K, Schiraldi DA (2018) Sustainable, low flammability, mechanically-strong poly(vinyl alcohol) aerogels. Polymers 10(10):1102

    Article  Google Scholar 

  32. He C, He YL, Xie T, Liu Q (2013) Predictions of the effective thermal conductivity for aerogel-fiber composite insulation materials using lattice Boltzmann method. J Eng Thermophys 34:742–745

    Google Scholar 

  33. Qu ZG, Fu YD, Liu Y, Zhou L (2018) Approach for predicting effective thermal conductivity of aerogel materials through a modified lattice Boltzmann method. Appl Therm Eng 132:730–739

    Article  Google Scholar 

  34. Xue T, Zhang X, Tamma KK (2018) A two-field state-based peridynamic theory for thermal contact problems. J Comput Phys. https://doi.org/10.1016/j.jcp.2018.08.014

  35. Vishweshwara PS, Gnanasekaran N, Arun M (2018) Inverse estimation of interfacial heat transfer coefficient during the solidification of Sn-5wt%Pb alloy using evolutionary algorithm. Adv Mater Metallurgy. https://doi.org/10.1007/978-981-13-1780-4_23

  36. Pang XM, Zhou JQ, Yang JX, Liao MH (2016) Effective thermal conductivity of composite materials containing pore and interface thermal resistance. Chin J Nonferrous 26(8):1668–1674

    Google Scholar 

  37. Li ZY, Zhu CY, Zhao XP (2017) A theoretical and numerical study on the gas-contributed thermal conductivity in aerogel. Int J Heat Mass Trans 108:1982–1990

    Article  Google Scholar 

  38. Wei GS, Wang LX, Chen L, Du XZ, Xu C, Zhang XX (2015) Analysis of gas molecule mean free path and gaseous thermal conductivity in confined nanoporous structures. Int J Thermophys 36(10–11):2953–2966

    Article  Google Scholar 

  39. Zhang C, Kan AK, Meng C, Guo ZP, Cao D, Xu Z (2016) Research status of insulative aerogel composite material. Chin Refrig Technol 36(4):61–67

    Google Scholar 

  40. Du ML, Guo BC, Jia DM (2006) Thermal stability and flame retardant effects of halloysite nanotubes on poly(propylene). Eur Polym J 42(6):1362–1369

    Article  Google Scholar 

  41. Alhassan SM, Qutubuddin S, Schiraldi DA (2015) Mechanically strong ice-templated laponite/polyvinyl alcohol aerogels. Mater Lett 157:155–157

    Article  Google Scholar 

  42. Rowe AA, Tajvidi M, Gardner DJ (2016) Thermal stability of cellulose nanomaterials and their composites with polyvinyl alcohol (PVA). J Therm Anal Calorim 126(3):1371–1386

    Article  Google Scholar 

  43. Liu YX, Fan LL, Mo XZ, Pang JY, Yang F (2017) Thermal decomposition behavior of TPS/PVA blends. China Synth Resin Plastics 34(6):43–52

    Google Scholar 

  44. Paran SMR, Vahabi H, Jouyandeh M, Ducos F, Formela K, Saeb MR (2019) Thermal decomposition kinetics of dynamically vulcanized polyamide 6-acrylonitrile butadiene rubber-halloysite nanotube nanocomposites. J Appl Polym Sci 136(20):47483

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51772202 and 51472175).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongli Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Li, S., Li, H. et al. Facile preparation of HNT/PVOH aerogels and the construction of PVOH-assisted HNT three-dimensional network. J Sol-Gel Sci Technol 91, 496–504 (2019). https://doi.org/10.1007/s10971-019-05064-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-019-05064-6

Keywords

Navigation